Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Nano ; 4(10): 5591-8, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20843091

RESUMEN

Here we report a technique for transferring graphene layers, one by one, from a multilayer deposit formed by epitaxial growth on the Si-terminated face of a 6H-SiC substrate. The procedure uses a bilayer film of palladium/polyimide deposited onto the graphene coated SiC, which is then mechanically peeled away and placed on a target substrate. Orthogonal etching of the palladium and polyimide leaves isolated sheets of graphene with sizes of square centimeters. Repeating these steps transfers additional sheets from the same SiC substrate. Raman spectroscopy, scanning tunneling spectroscopy, low-energy electron diffraction and X-ray photoelectron spectroscopy, together with scanning tunneling, atomic force, optical, and scanning electron microscopy reveal key properties of the materials. The sheet resistances determined from measurements of four point probe devices were found to be ∼2 kΩ/square, close to expectation. Graphene crossbar structures fabricated in stacked configurations demonstrate the versatility of the procedures.

2.
Adv Mater ; 22(10): 1072-7, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20401931

RESUMEN

Monolayer membranes of conjugated carbon represent a class of nanomaterial with demonstrated uses in various areas of electronics, ranging from transparent, flexible, and stretchable thin film conductors, to semiconducting materials in moderate and high-performance field-effect transistors. Although graphene represents the most prominent example, many other more structurally and chemically diverse systems are also of interest. This article provides a review of demonstrated synthetic and integration strategies, and speculates on future directions for the field.


Asunto(s)
Carbono/química , Gases/química , Grafito/química , Nanotubos de Carbono/química
3.
J Phys Condens Matter ; 22(20): 205301, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21393703

RESUMEN

We report measurements of magnetoresistance in single-layer graphene as a function of gate voltage (carrier density) at 250 mK. By examining signatures of weak localization (WL) and universal conductance fluctuations (UCF), we find a consistent picture of phase coherence loss due to electron-electron interactions. The gate dependence of the elastic scattering terms suggests that the effect of trigonal warping, i.e. the nonlinearity of the dispersion curves, may be strong at high carrier densities, while intra-valley scattering may dominate close to the Dirac point. In addition, a decrease in UCF amplitude with decreasing carrier density can be explained by a corresponding loss of phase coherence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...