Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Imaging ; 97: 22-27, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871361

RESUMEN

OBJECTIVE: Normal pressure hydrocephalus (NPH) is a neurodegenerative disease that is potentially reversible by shunt surgery in approximately 60% of patients. Imaging may provide a means to investigate brain tissue viability and oxygen metabolism in NPH patients. METHODS: Oxygen extraction fraction (OEF) mapping was generated from 3D multi-echo gradient echo MRI (mGRE) data using QQ-CCTV algorithm and cerebral blood flow (CBF) using 3D arterial spin labeling (ASL) MRI data, thereby calculating the cerebral metabolic rate of oxygen (CMRO2 = CBF × OEF × [H]a) in 16 NPH patients. Regression analyses using cortical gray matter and deep gray matter regions were conducted with age, gender, CSF stroke volume and normalized ventricular volume as independent variables. RESULTS: OEF showed significant negative correlations with normalized brain ventricular volumes in the whole brain (p = 0.004, q = 0.01), cortical gray matter (p = 0.004, q = 0.01), caudate (p = 0.02, q = 0.04), and pallidum (p = 0.03, q = 0.04), but no significant correlation with CSF stroke volume (q > 0.05). There was no significant finding with CBF or CMRO2. CONCLUSION: In NPH patients, low OEF in several regions was significantly correlated with large ventricular volumes, indicating decreased tissue oxygen metabolism with increased NPH severity. OEF mapping may provide a functional understanding of neurodegeneration in NPH and may improve monitoring of disease course and treatment outcomes.


Asunto(s)
Hidrocéfalo Normotenso , Enfermedades Neurodegenerativas , Humanos , Oxígeno , Hidrocéfalo Normotenso/diagnóstico por imagen , Hidrocéfalo Normotenso/cirugía , Hidrocéfalo Normotenso/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular
2.
Cancer Rep (Hoboken) ; 6(7): e1788, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750401

RESUMEN

BACKGROUND: Clinical trials evaluating immune checkpoint inhibition (ICI) in recurrent high-grade gliomas (rHGG) report 7%-20% 6-month progression-free survival (PFS), while re-irradiation demonstrates 28%-39% 6-month PFS. AIMS: We evaluate outcomes of patients treated with ICI and concurrent re-irradiation utilizing stereotactic body radiotherapy/fractionated stereotactic radiosurgery (SBRT) compared to ICI monotherapy. METHODS AND RESULTS: Patients ≥18-years-old with rHGG (WHO grade III and IV) receiving ICI + SBRT or ICI monotherapy between January 1, 2016 and January 1, 2019 were included. Adverse events, 6-month PFS and overall survival (OS) were assessed. Log-rank tests were used to evaluate PFS and OS. Histogram analyses of apparent diffusion coefficient maps and dynamic contrast-enhanced magnetic resonance perfusion metrics were performed. Twenty-one patients with rHGG (ICI + SBRT: 16; ICI: 5) were included. The ICI + SBRT and ICI groups received a mean 7.25 and 6.2 ICI cycles, respectively. There were five grade 1, one grade 2 and no grade 3-5 AEs in the ICI + SBRT group, and four grade 1 and no grade 2-5 AEs in the ICI group. Median PFS was 2.85 and 1 month for the ICI + SBRT and ICI groups; median OS was 7 and 6 months among ICI + SBRT and ICI groups, respectively. There were significant differences in pre and posttreatment tumor volume in the cohort (12.35 vs. 20.51; p = .03), but not between treatment groups. CONCLUSIONS: In this heavily pretreated cohort, ICI with re-irradiation utilizing SBRT was well tolerated. Prospective studies are warranted to evaluate potential therapeutic benefits to re-irradiation with ICI + SBRT in rHGG.


Asunto(s)
Glioma , Radiocirugia , Reirradiación , Humanos , Adolescente , Radiocirugia/efectos adversos , Radiocirugia/métodos , Reirradiación/efectos adversos , Reirradiación/métodos , Glioma/patología , Supervivencia sin Progresión , Inmunoterapia
3.
Med Phys ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36651630

RESUMEN

BACKGROUND: Positron emission tomography (PET) has had a transformative impact on oncological and neurological applications. However, still much of PET's potential remains untapped with limitations primarily driven by low spatial resolution, which severely hampers accurate quantitative PET imaging via the partial volume effect (PVE). PURPOSE: We present experimental results of a practical and cost-effective ultra-high resolution brain-dedicated PET scanner, using our depth-encoding Prism-PET detectors arranged along a compact and conformal gantry, showing substantial reduction in PVE and accurate radiotracer uptake quantification in small regions. METHODS: The decagon-shaped prototype scanner has a long diameter of 38.5 cm, a short diameter of 29.1 cm, and an axial field-of-view (FOV) of 25.5 mm with a single ring of 40 Prism-PET detector modules. Each module comprises a 16 × 16 array of 1.5 × 1.5 × 20-mm3 lutetium yttrium oxyorthosillicate (LYSO) scintillator crystals coupled 4-to-1 to an 8 × 8 array of silicon photomultiplier (SiPM) pixels on one end and to a prismatoid light guide array on the opposite end. The scanner's performance was evaluated by measuring depth-of-interaction (DOI) resolution, energy resolution, timing resolution, spatial resolution, sensitivity, and image quality of ultra-micro Derenzo and three-dimensional (3D) Hoffman brain phantoms. RESULTS: The full width at half maximum (FWHM) DOI, energy, and timing resolutions of the scanner are 2.85 mm, 12.6%, and 271 ps, respectively. Not considering artifacts due to mechanical misalignment of detector blocks, the intrinsic spatial resolution is 0.89-mm FWHM. Point source images reconstructed with 3D filtered back-projection (FBP) show an average spatial resolution of 1.53-mm FWHM across the entire FOV. The peak absolute sensitivity is 1.2% for an energy window of 400-650 keV. The ultra-micro Derenzo phantom study demonstrates the highest reported spatial resolution performance for a human brain PET scanner with perfect reconstruction of 1.00-mm diameter hot-rods. Reconstructed images of customized Hoffman brain phantoms prove that Prism-PET enables accurate radiotracer uptake quantification in small brain regions (2-3 mm). CONCLUSIONS: Prism-PET will substantially strengthen the utility of quantitative PET in neurology for early diagnosis of neurodegenerative diseases, and in neuro-oncology for improved management of both primary and metastatic brain tumors.

4.
Sci Rep ; 12(1): 13351, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922659

RESUMEN

In rodents, hypothalamic inflammation plays a critical role in aging and age-related diseases. Hypothalamic inflammation has not previously been assessed in vivo in humans. We used Positron Emission Tomography (PET) with a radiotracer sensitive to the translocator protein (TSPO) expressed by activated microglia, to assess correlations between age and regional brain TSPO in a group of healthy subjects (n = 43, 19 female, aged 23-78), focusing on hypothalamus. We found robust age-correlated TSPO expression in thalamus but not hypothalamus in the combined group of women and men. This pattern differs from what has been described in rodents. Prominent age-correlated TSPO expression in thalamus in humans, but in hypothalamus in rodents, could reflect evolutionary changes in size and function of thalamus versus hypothalamus, and may be relevant to the appropriateness of using rodents to model human aging. When examining TSPO PET results in women and men separately, we found that only women showed age-correlated hypothalamic TSPO expression. We suggest this novel result is relevant to understanding a stark sex difference in human aging: that only women undergo loss of fertility-menopause-at mid-life. Our finding of age-correlated hypothalamic inflammation in women could have implications for understanding and perhaps altering reproductive aging in women.


Asunto(s)
Microglía , Receptores de GABA , Adulto , Anciano , Encéfalo/metabolismo , Femenino , Humanos , Inflamación/diagnóstico por imagen , Inflamación/metabolismo , Masculino , Microglía/metabolismo , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo , Adulto Joven
5.
J Neuroradiol ; 47(4): 272-277, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31136748

RESUMEN

BACKGROUND AND PURPOSE: The ability to predict high-grade meningioma preoperatively is important for clinical surgical planning. The purpose of this study is to evaluate the performance of comprehensive multiparametric MRI, including susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) in predicting high-grade meningioma both qualitatively and quantitatively. METHODS: Ninety-two low-grade and 37 higher grade meningiomas in 129 patients were included in this study. Morphological characteristics, quantitative histogram analysis of QSM and ADC images, and tumor size were evaluated to predict high-grade meningioma using univariate and multivariate analyses. Receiver operating characteristic (ROC) analyses were performed on the morphological characteristics. Associations between Ki-67 proliferative index (PI) and quantitative parameters were calculated using Pearson correlation analyses. RESULTS: For predicting high-grade meningiomas, the best predictive model in multivariate logistic regression analyses included calcification (ß=0.874, P=0.110), peritumoral edema (ß=0.554, P=0.042), tumor border (ß=0.862, P=0.024), tumor location (ß=0.545, P=0.039) for morphological characteristics, and tumor size (ß=4×10-5, P=0.004), QSM kurtosis (ß=-5×10-3, P=0.058), QSM entropy (ß=-0.067, P=0.054), maximum ADC (ß=-1.6×10-3, P=0.003), ADC kurtosis (ß=-0.013, P=0.014) for quantitative characteristics. ROC analyses on morphological characteristics resulted in an area under the curve (AUC) of 0.71 (0.61-0.81) for a combination of them. There were significant correlations between Ki-67 PI and mean ADC (r=-0.277, P=0.031), 25th percentile of ADC (r=-0.275, P=0.032), and 50th percentile of ADC (r=-0.268, P=0.037). CONCLUSIONS: Although SWI and QSM did not improve differentiation between low and high-grade meningiomas, combining morphological characteristics and quantitative metrics can help predict high-grade meningioma.


Asunto(s)
Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Meningioma/diagnóstico por imagen , Meningioma/patología , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Curva ROC , Estudios Retrospectivos
6.
Eur Radiol ; 29(6): 2751-2759, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30617484

RESUMEN

OBJECTIVES: Texture analysis performed on MRI images can provide additional quantitative information that is invisible to human assessment. This study aimed to evaluate the feasibility of texture analysis on preoperative conventional MRI images in predicting early malignant transformation from low- to high-grade glioma and compare its utility to histogram analysis alone. METHODS: A total of 68 patients with low-grade glioma (LGG) were included in this study, 15 of which showed malignant transformation. Patients were randomly divided into training (60%) and testing (40%) sets. Texture analyses were performed to obtain the most discriminant factor (MDF) values for both training and testing data. Receiver operating characteristic (ROC) curve analyses were performed on MDF values and 9 histogram parameters in the training data to obtain cutoff values for determining the correct rates of discrimination between two groups in the testing data. RESULTS: The ROC analyses on MDF values resulted in an area under the curve (AUC) of 0.90 (sensitivity 85%, specificity 84%) for T2w FLAIR, 0.92 (86%, 94%) for ADC, 0.96 (97%, 84%) for T1w, and 0.82 (78%, 75%) for T1w + Gd and correctly discriminated between the two groups in 93%, 100%, 93%, and 92% of cases in testing data, respectively. In the astrocytoma subgroup, AUCs were 0.92 (88%, 83%) for T2w FLAIR and 0.90 (92%, 74%) for T1w + Gd and correctly discriminated two groups in 100% and 92% of cases. The MDF outperformed all 9 of the histogram parameters. CONCLUSION: Texture analysis on conventional preoperative MRI images can accurately predict early malignant transformation of LGGs, which may guide therapeutic planning. KEY POINTS: • Texture analysis performed on MRI images can provide additional quantitative information that is invisible to human assessment. • Texture analysis based on conventional preoperative MR images can accurately predict early malignant transformation from low- to high-grade glioma. • Texture analysis is a clinically feasible technique that may provide an alternative and effective way of determining the likelihood of early malignant transformation and help guide therapeutic decisions.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Encéfalo/patología , Transformación Celular Neoplásica/patología , Glioma/diagnóstico , Imagen por Resonancia Magnética/métodos , Clasificación del Tumor/métodos , Adulto , Femenino , Humanos , Masculino , Curva ROC , Reproducibilidad de los Resultados
7.
Magn Reson Imaging ; 57: 254-258, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30465868

RESUMEN

PURPOSE: Texture analysis performed on MR images can detect quantitative features that are imperceptible to human visual assessment. The purpose of this study was to evaluate the feasibility of texture analysis on preoperative conventional MRI to discriminate between histological subtypes in low-grade gliomas (LGGs), and to determine the utility of texture analysis compared to histogram analysis alone. METHODS: A total of 41 patients with LGG, 21 astrocytoma and 20 1p/19q codeleted oligodendroglioma were included in this study. Patients were randomly divided into training (60%) and testing (40%) sets. Texture analysis was performed on conventional MRI sequences to obtain the most discriminant factor (MDF) values for both the training and testing data. Receiver operating characteristic (ROC) curve analyses were then performed using the MDF values and 9 histogram parameters in the training data to obtain cut-off values for determining the correct rate of discriminating between astrocytoma and oligodendroglioma in the testing data. RESULTS: The ROC analyses using MDF values resulted in an area under the curve (AUC) of 0.91 (sensitivity 86%, specificity 87%) for T2w FLAIR, 0.94 (87%, 89%) for ADC, 0.98 (93%, 95%) for T1w, and 0.88 (78%, 86%) for T1w + Gd sequences. Using the best cut-off values, MDF correctly discriminated between the two groups in 94%, 82%, 100%, and 88% of cases in the testing data, respectively. The MDF outperformed all 9 of the histogram parameters. CONCLUSION: Texture analysis performed on conventional preoperative MRI images can accurately predict histological subtype of LGGs, which would have an impact on clinical management.


Asunto(s)
Astrocitoma/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Oligodendroglioma/diagnóstico por imagen , Adulto , Área Bajo la Curva , Astrocitoma/patología , Neoplasias Encefálicas/patología , Diagnóstico Diferencial , Estudios de Factibilidad , Femenino , Glioma/diagnóstico por imagen , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Oligodendroglioma/patología , Curva ROC , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad
8.
J Magn Reson Imaging ; 46(4): 951-971, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28295954

RESUMEN

Quantitative susceptibility mapping (QSM) has enabled magnetic resonance imaging (MRI) of tissue magnetic susceptibility to advance from simple qualitative detection of hypointense blooming artifacts to precise quantitative measurement of spatial biodistributions. QSM technology may be regarded to be sufficiently developed and validated to warrant wide dissemination for clinical applications of imaging isotropic susceptibility, which is dominated by metals in tissue, including iron and calcium. These biometals are highly regulated as vital participants in normal cellular biochemistry, and their dysregulations are manifested in a variety of pathologic processes. Therefore, QSM can be used to assess important tissue functions and disease. To facilitate QSM clinical translation, this review aims to organize pertinent information for implementing a robust automated QSM technique in routine MRI practice and to summarize available knowledge on diseases for which QSM can be used to improve patient care. In brief, QSM can be generated with postprocessing whenever gradient echo MRI is performed. QSM can be useful for diseases that involve neurodegeneration, inflammation, hemorrhage, abnormal oxygen consumption, substantial alterations in highly paramagnetic cellular iron, bone mineralization, or pathologic calcification; and for all disorders in which MRI diagnosis or surveillance requires contrast agent injection. Clinicians may consider integrating QSM into their routine imaging practices by including gradient echo sequences in all relevant MRI protocols. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:951-971.


Asunto(s)
Artefactos , Medios de Contraste , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Metales , Humanos
9.
Neurobiol Aging ; 37: 47-57, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26686669

RESUMEN

The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aß also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aß load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition.


Asunto(s)
Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Estudios de Asociación Genética , Caracteres Sexuales , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Animales , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Corteza Cerebral/patología , Cognición , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Epistasis Genética/genética , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...