Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
World Allergy Organ J ; 17(4): 100890, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38585333

RESUMEN

Background: There are few studies concerning the impact of serum vitamin D status on the risk of allergen sensitization and atopic dermatitis (AD) during early childhood. Method: Children with AD and age-matched healthy controls (HC) were prospectively enrolled at age 0.5, 2, and 4 years. Serum 25-hydroxyvitamin D (25[OH]D) level was measured using Elecsys Vitamin D Total assay. The study utilized the ImmunoCAP assay to analyze specific IgE for food and inhalant allergens, along with total serum IgE levels. It explored the connection between vitamin D levels and allergen sensitization, as well as their influence on AD at different ages. Results: A total of 222 children including 95 (59 AD and 36 HC), 66 (37 AD and 29 HC), and 61 (32 AD and 29 HC) children were classified at age 0.5, 2, and 4 years, respectively. In children with AD, there was a significantly lower vitamin D level at age 2 and 4, but a significantly higher prevalence of food and mite sensitization at all ages in comparison with HC (P < 0.001). Vitamin D level was found to be inversely related to the prevalence of allergen sensitization at age 4 (P < 0.05). However, vitamin D level appeared to have high importance for allergen sensitization at all ages and AD at age 2 and 4 years. Conclusion: Vitamin D deficiency is strongly associated with heightened prevalence of allergen sensitization, potentially increasing the susceptibility to AD in early childhood.

2.
Metabolites ; 14(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38668347

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic lung disease mainly affecting premature infants needing ventilation or oxygen for respiratory distress. This study aimed to evaluate the molecular linkages for BPD in very and extremely preterm infants using a metabolomics-based approach. A case-control study of enrolling preterm infants born before 32 weeks gestational age (GA) was prospectively performed. These preterm infants were subsequently stratified into the following two groups for further analysis: no or mild BPD, and moderate or severe BPD based on the 2019 NICHD criteria. Urinary metabolomic profiling was performed using 1H-Nuclear magnetic resonance (NMR) spectroscopy coupled with partial least squares discriminant analysis (PLS-DA) at a corrected age of 6 months. Metabolites significantly differentially related to GA and BPD severity were performed between groups, and their roles in functional metabolic pathways were also assessed. A total of 89 preterm infants born before 32 weeks gestation and 50 infants born at term age (above 37 completed weeks' gestation) served as controls and were enrolled into the study. There were 21 and 24 urinary metabolites identified to be significantly associated with GA and BPD severity, respectively (p < 0.05). Among them, N-phenylacetylglycine, hippurate, acetylsalicylate, gluconate, and indoxyl sulfate were five metabolites that were significantly higher, with the highest importance in both infants with GA < 28 weeks and those with moderate to severe BPD, whereas betaine and N,N-dimethylglycine were significantly lower (p < 0.05). Furthermore, ribose and a gluconate related pentose phosphate pathway were strongly associated with these infants (p < 0.01). In conclusion, urinary metabolomic analysis highlights the crucial role of gut microbiota dysbiosis in the pathogenesis of BPD in preterm infants, accompanied by metabolites related to diminished antioxidative capacity, prompting an aggressive antioxidation response in extremely preterm infants with severe BPD.

3.
J Mol Med (Berl) ; 102(6): 819-830, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38568327

RESUMEN

We conducted a comprehensive metabolomic analysis of plasma samples obtained from pregnant women who displayed varying post-vaccination antibody titers after receiving mRNA-1273-SARS-CoV-2 vaccines. The study involved 62 pregnant women, all of whom had been vaccinated after reaching 24 weeks of gestation. To quantify post-vaccination plasma antibody titers, we employed binding antibody units (BAU) in accordance with the World Health Organization International Standard. Subsequently, we classified the study participants into three distinct BAU/mL categories: those with high titers (above 2000), medium titers (ranging from 1000 to 2000), and low titers (below 1000). Plasma metabolomic profiling was conducted using 1H nuclear magnetic resonance spectroscopy, and the obtained data were correlated with the categorized antibody titers. Notably, in pregnant women exhibiting elevated anti-SARS-CoV-2 antibody titers, reduced plasma concentrations of acetate and urea were observed. A significant negative correlation between these compounds and antibody titers was also evident. An analysis of metabolomics pathways revealed significant inverse associations between antibody titers and four distinct amino acid metabolic pathways: (1) biosynthesis of phenylalanine, tyrosine, and tryptophan; (2) biosynthesis of valine, leucine, and isoleucine; (3) phenylalanine metabolism; and (4) degradation of valine, leucine, and isoleucine. Additionally, an association between the synthesis and degradation pathways of ketone bodies was evident. In conclusion, we identified different metabolic pathways that underlie the diverse humoral responses triggered by COVID-19 mRNA vaccines during pregnancy. Our data hold significant implications for refining COVID-19 vaccination approaches in expectant mothers. KEY MESSAGES : Anti-SARS-CoV-2 antibody titers decline as the number of days since COVID-19 vaccination increases. Anti-SARS-CoV-2 antibody titers are inversely associated with acetate, a microbial-derived metabolite, and urea. Amino acid metabolism is significantly associated with SARS-CoV-2 antibody titers.


Asunto(s)
Acetatos , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Metabolómica , SARS-CoV-2 , Urea , Vacunación , Humanos , Femenino , Embarazo , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/sangre , Metabolómica/métodos , SARS-CoV-2/inmunología , Adulto , Urea/sangre , Vacunas contra la COVID-19/inmunología , Metaboloma , Vacuna nCoV-2019 mRNA-1273
4.
Sci Prog ; 106(4): 368504231220988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130182

RESUMEN

BACKGROUND: This study investigated the use of ultrasound-guided extracorporeal shock wave lithotripsy (ESWL) to break stones in the genitourinary tract and prevent genitourinary injury. Our goals were to achieve accurate focusing and minimal X-ray exposure for the benefit of the patients. METHODS: The LiteMed LM-9200 lithotripter with ultrasonography and fluoroscopy was used for two different procedures: autoaimed and autoperiodical. These procedures enabled dual focusing on stone localization and tracking. RESULTS: Out of 108 patients who underwent autoperiodical procedures, 29 had no gross hematuria. Among the 335 patients who received autoaimed procedures, 194 had no gross hematuria. The average duration of X-ray exposure during autoperiodical and autoaimed procedures was 120 and 50 s, respectively. CONCLUSION: The ultrasound-guided ESWL with minimal X-ray exposure was found to be useful in treating genitourinary upper-tract urolithiasis in the autoaimed procedure. Patients who underwent the autoaimed procedure experienced less gross hematuria compared to those who underwent the autoperiodical procedure.


Asunto(s)
Litotricia , Urolitiasis , Humanos , Hematuria/etiología , Rayos X , Taiwán/epidemiología , Urolitiasis/diagnóstico por imagen , Urolitiasis/terapia , Urolitiasis/etiología , Litotricia/efectos adversos , Litotricia/métodos , Ultrasonografía , Ultrasonografía Intervencional
5.
Metabolites ; 12(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35208202

RESUMEN

Early exposure to formula milk increases the likelihood of cow's milk sensitization and food allergies in the later childhood. However, the underlying mechanisms are multifactorial and unclear. Fifty-five children from a follow-up birth cohort study were grouped into exclusive breastfeeding (EBF, n = 33) and formula feeding (EFF, n = 22) in the first six months of life. Urinary metabolites were longitudinally assessed and analyzed at 6 months, 1, and 2 years of age using 1H-nuclear magnetic resonance (NMR) spectroscopy. Integrated analysis of metabolic profiling associated with formula feeding and milk sensitization related to IgE reactions was also investigated. Twenty-two metabolites were significantly obtained in the EFF set at age 0.5, whereas nine metabolites were predominantly obtained in the milk sensitization set at age 1. A subsequent analysis of metabolic change from 6 months to age 1 identified eight metabolites, including 3-methyl-2-oxovaleric acid, glutarate, lysine, N-phenylacetylglycine, N,N-dimethylglycine, 3-indoxysulfate, 2-oxoglutaric acid, and pantothenate associated with formula feeding and milk sensitization with same trend variation. Among them, 3-indoxysulfate, N-phenylacetylglycine, and N,N-dimethylglycine were gut microbial-derived without IgE association. By contrast, 3-methyl-2-oxovaleric acid, glutarate, and lysine were IgE related associated with formula feeding contributing to milk sensitization (p < 0.05). Longitudinal urinary metabolomic analysis provides molecular insight into the mechanism of formula feeding associated with milk sensitization. Gut microbial-derived metabolites associated with formula feeding and IgE associated metabolites related to branched-chain amino acid metabolism play roles in developing sensitization and allergic symptoms in response to formula feeding.

6.
Sci Rep ; 11(1): 23407, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862469

RESUMEN

A metabolomics-based approach to address the molecular mechanism of childhood asthma with immunoglobulin E (IgE) or allergen sensitization related to microbiome in the airways remains lacking. Fifty-three children with lowly sensitized non-atopic asthma (n = 15), highly sensitized atopic asthma (n = 13), and healthy controls (n = 25) were enrolled. Blood metabolomic analysis with 1H-nuclear magnetic resonance (NMR) spectroscopy and airway microbiome composition analysis by bacterial 16S rRNA sequencing were performed. An integrative analysis of their associations with allergen-specific IgE levels for lowly and highly sensitized asthma was also assessed. Four metabolites including tyrosine, isovalerate, glycine, and histidine were uniquely associated with lowly sensitized asthma, whereas one metabolite, acetic acid, was strongly associated with highly sensitized asthma. Metabolites associated with highly sensitized asthma (valine, isobutyric acid, and acetic acid) and lowly sensitized asthma (isovalerate, tyrosine, and histidine) were strongly correlated each other (P < 0.01). Highly sensitized asthma associated metabolites were mainly enriched in pyruvate and acetyl-CoA metabolisms. Metabolites associated with highly sensitized atopic asthma were mostly correlated with microbiota in the airways. Acetic acid, a short-chain fatty acid (SCFA), was negatively correlated with the genus Atopobium (P < 0.01), but positively correlated with the genus Fusobacterium (P < 0.05). In conclusion, metabolomics reveals microbes-related metabolic pathways associated with IgE responses to house dust mite allergens in childhood asthma. A strong correlation of metabolites related to highly sensitized atopic asthma with airway microbiota provides linkages between the host-microbial interactions and asthma endotypes.


Asunto(s)
Asma/inmunología , Bacterias/clasificación , Inmunoglobulina E/sangre , Metabolómica/métodos , Análisis de Secuencia de ADN/métodos , Asma/sangre , Asma/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Casos y Controles , Preescolar , Estudios Transversales , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Interacciones Microbiota-Huesped , Humanos , Inmunoglobulina E/inmunología , Masculino , Redes y Vías Metabólicas , Filogenia , Espectroscopía de Protones por Resonancia Magnética , ARN Ribosómico 16S/genética
7.
Front Oncol ; 11: 680910, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395249

RESUMEN

Few studies have addressed the impact of diagnostic urine metabolites and the clinical outcomes associated with genitourinary urothelial (GU) cancer to date. Furthermore, longitudinal analysis of the dynamics of urine metabolites contributing to the detection of GU cancer has not yet been fully investigated; therefore, the discovery of novel diagnostic urine biomarkers is of enormous interest. We explored the correlation of the urine metabolomic profiles to GU cancers. The aqueous metabolites of the GU cancer and the control were also identified and analyzed through high-resolution1H nuclear magnetic resonance (NMR) spectroscopy. Compared with the control, the urine metabolites of the tumor were studied in relation to changes over time in a linear mixed model for repeated measures. The urine metabolites of sixty-three (44 male and 19 female) patients with GU cancers were systemically analyzed. The urine metabolite profile in GU cancer was significantly higher than those in the control group (p<0.05). Sevenurine metabolites including histidine, propylene glycol, valine, leucine, acetylsalicylate, glycine, and isoleucine as well as other pathways were identified statistically and were significantly associated with GU cancer detection with longitudinal analysis. We discovered that histidine, propylene glycol, valine, leucine, acetylsalicylate, glycine, isoleucine, succinic acid, lysine2-aminobutyric acid, and acetic acid are involved significantly in all types of male patients in whom the type (upper tract) of urine metabolites were found to be statistically significant compared with the control. We did not find any statistical significance in urine biomarkers between female and male patients. However, a statistically insignificant correlation was found among the grade and stage with the metabolites.

8.
Sci Rep ; 11(1): 15608, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341439

RESUMEN

The aim of the study was to investigate differences in metabolic profiles between patients with major depressive disorder (MDD) with full remission (FR) and healthy controls (HCs). A total of 119 age-matched MDD patients with FR (n = 47) and HCs (n = 72) were enrolled and randomly split into training and testing sets. A 1H-nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach was used to identify differences in expressions of plasma metabolite biomarkers. Eight metabolites, including histidine, succinic acid, proline, acetic acid, creatine, glutamine, glycine, and pyruvic acid, were significantly differentially-expressed in the MDD patients with FR in comparison with the HCs. Metabolic pathway analysis revealed that pyruvate metabolism via the tricarboxylic acid cycle linked to amino acid metabolism was significantly associated with the MDD patients with FR. An algorithm based on these metabolites employing a linear support vector machine differentiated the MDD patients with FR from the HCs with a predictive accuracy, sensitivity, and specificity of nearly 0.85. A metabolomics-based approach could effectively differentiate MDD patients with FR from HCs. Metabolomic signatures might exist long-term in MDD patients, with metabolic impacts on physical health even in patients with FR.


Asunto(s)
Trastorno Depresivo Mayor , Espectroscopía de Resonancia Magnética , Adulto , Humanos , Masculino , Persona de Mediana Edad
9.
Sci Rep ; 10(1): 13449, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778700

RESUMEN

A connection between airway and gut microbiota related to allergen exposure in childhood allergies was not well addressed. We aimed to identify the microbiota alterations in the airway and gut related to mite-specific IgE responses in young children with airway allergies. This study enrolled 60 children, including 38 mite-sensitized children (20 rhinitis and 18 asthma), and 22 non-mite-sensitized healthy controls. Microbiome composition analysis of the throat swab and stool samples was performed using bacterial 16S rRNA sequencing. An integrative analysis of the airway and stool microbial profiling associated with IgE reactions in childhood allergic rhinitis and asthma was examined. The Chao1 and Shannon indices in the airway were significantly lower than those in the stool. Additionally, an inverse association of the airway microbial diversity with house dust mite (HDM) sensitization and allergic airway diseases was noted. Fecal IgE levels were positively correlated with the serum Dermatophagoides pteronyssinus- and Dermatophagoides farinae-specific IgE levels. Airway Leptotrichia spp. related to asthma were strongly correlated with fecal Dorea and Ruminococcus spp., which were inversely associated with fecal IgE levels and risk of allergic rhinitis. Moreover, four airway genera, Campylobacter, Selenomonas, Tannerella, and Atopobium, were negatively correlated with both serum mite-specific and fecal IgE levels. Among them, the airway Selenomonas and Atopobium spp. were positively correlated with stool Blautia and Dorea spp. related to asthma and allergic rhinitis, respectively. In conclusion, airway microbial dysbiosis in response to HDM and its cross-talk with the gut microbial community is related to allergic airway diseases in early childhood.


Asunto(s)
Antígenos Dermatofagoides/inmunología , Microbioma Gastrointestinal/inmunología , Sistema Respiratorio/inmunología , Alérgenos , Animales , Asma/sangre , Asma/inmunología , Estudios de Casos y Controles , Preescolar , Reacciones Cruzadas , Disbiosis/genética , Femenino , Humanos , Hipersensibilidad/inmunología , Inmunoglobulina E/sangre , Masculino , Microbiota , Pyroglyphidae , ARN Ribosómico 16S , Rinitis Alérgica/complicaciones , Taiwán
10.
World J Surg Oncol ; 18(1): 121, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493393

RESUMEN

PURPOSE: Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver with a dismal prognosis. Vascular invasion, among others, is the most robust indicator of postoperative recurrence and overall survival after liver resection for HCC. Few studies to date have attempted to search for effective markers to predict vascular invasion before the operation. The current study would examine the plasma metabolic profiling via 1H-NMR of HCC patients undergoing liver resection and aim to search for potential biomarkers in the early detection of HCC with normal alpha-fetoprotein (AFP) and the diagnosis of vascular invasion preoperatively. MATERIALS AND METHODS: HCC patients scheduled to receive liver resections for their HCC were recruited and divided into two separate groups, investigation cohort and validation cohort. Their preoperative blood samples were collected and subjected to a comprehensive metabolomic profiling using 1H-nuclear magnetic resonance spectroscopy (NMR). RESULTS: There were 35 HCC patients in the investigation group and 22 patients in the validation group. Chronic hepatitis B remained the most common etiology of HCC, followed by chronic HCV infection. The two study cohorts were essentially comparable in terms of major clinicopathological variables. After 1H-nuclear NMR analysis, we found in the investigation cohort that HCC with normal alpha-fetoprotein (AFP < 15 ng/mL) had significantly higher serum level of O-acetylcarnitine than those with higher AFP (AFP ≥ 15 ng/mL, P = 0.025). In addition, HCC with microscopic vascular invasion (VI) had significantly higher preoperative serum level of formate than HCC without microscopic VI (P = 0.023). These findings were similar in the validation cohort. CONCLUSION: A comprehensive metabolomic profiling of HCC demonstrated that serum metabolites may be utilized to assist the early diagnosis of AFP-negative HCC patients and recognition of microvascular invasion in order to facilitate preoperative surgical planning and postoperative follow-up. Further, larger scale prospective studies are warranted to consolidate our findings.


Asunto(s)
Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/cirugía , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/cirugía , alfa-Fetoproteínas/metabolismo , Anciano , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/patología , Femenino , Hepatectomía , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/patología , Masculino , Invasividad Neoplásica , Recurrencia Local de Neoplasia/irrigación sanguínea , Recurrencia Local de Neoplasia/patología , Proyectos Piloto , Pronóstico , Estudios Prospectivos , Curva ROC , Factores de Riesgo
11.
J Clin Med ; 9(4)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235493

RESUMEN

Extranodal extension (ENE) is an independent adverse prognostic factor in oral squamous cell carcinoma (OSCC), and is difficult to identify preoperatively. We aimed to discover biomarkers for high risk patients with ENE. Tandem tissue, plasma, and urine samples of 110 patients with OSCC were investigated through 600-MHz nuclear magnetic resonance (NMR) metabolomics analysis. We found that the levels of creatine, creatine phosphate, glycine, and tyramine in plasma significantly decreased in stage IV ENE positive OSCC compared with stage IV ENE negative OSCC. To understand the underlying mechanism behind the alteration of plasma metabolites, our tissue analysis revealed that the carnitine level significantly increased in tumors but significantly decreased in the adjacent normal tissue in advanced stage OSCC, in addition to decreased levels of alanine and pyruvate in tumor tissues. The global metabolomics analysis on tumor tissues also showed that stage IV tumors with an ENE positive status demonstrated higher levels of aspartate, butyrate, carnitine, glutamate, glutathione, glycine, glycolate, guanosine, and sucrose but lower levels of alanine, choline, glucose, isoleucine, lactate, leucine, myo-inositol, O-acetylcholine, oxypurinol, phenylalanine, pyruvate, succinate, tyrosine, valine, and xanthine than tumors with an ENE negative status. We concluded that metabolomics alterations in tumor tissues correspond to an increase in the tumor stage and are detectable in plasma samples. Metabolomic alterations of OSCC can serve as potential diagnostic markers and predictors of ENE in patients with stage IV OSCC.

12.
J Clin Med ; 9(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213896

RESUMEN

Several metabolomics studies have identified altered metabolic pathways that are related to asthma. However, an integrative analysis of the metabolic responses across blood and urine for a comprehensive framework of asthma in early childhood remains lacking. Fifty-four age-matched children with asthma (n = 28) and healthy controls (n = 26) were enrolled. Metabolome analysis of the plasma and urine samples was performed using 1H-nuclear magnetic resonance (NMR) spectroscopy coupled with partial least-squares discriminant analysis (PLS-DA). Integrated analysis of blood and urine metabolic profiling related to IgE reactions for childhood asthma was investigated. A significantly higher plasma histidine level was found, in parallel with lower urinary 1-methylnicotinamide and trimethylamine N-oxide (TMAO) levels, in children with asthma compared to healthy controls. Compared to children without allergic sensitization, 11 (92%) plasma metabolites and 8 (80%) urinary metabolites were found to be significantly different in children with IgE and food sensitization respectively. There were significant correlations between the plasma 3-hydroxybutyric acid and excreted volumes of the hydroxy acids, which were strongly correlated to plasma leucine and valine levels. Urine N-phenylacetylglycine, a microbial-host co-metabolite, was strongly correlated with total serum and food allergen-specific IgE levels. Plasma pyruvate and urine valine, leucine, and isoleucine degradation metabolisms were significantly associated with allergic sensitization for childhood asthma. In conclusion, blood and urine metabolome reflect different metabolic pathways in allergic reactions. Plasma pyruvate metabolism to acetic acid appears to be associated with serum IgE production, whereas urine branched-chain amino acid metabolism primarily reflects food allergic reactions against allergies.

13.
Metabolomics ; 15(11): 146, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664624

RESUMEN

INTRODUCTION: Endometrial cancer (EC) is one of the most common gynecologic neoplasms in developed countries but lacks screening biomarkers. OBJECTIVES: We aim to identify and validate metabolomic biomarkers in cervicovaginal fluid (CVF) for detecting EC through nuclear magnetic resonance (NMR) spectroscopy. METHODS: We screened 100 women with suspicion of EC and benign gynecological conditions, and randomized them into the training and independent testing datasets using a 5:1 study design. CVF samples were analyzed using a 600-MHz NMR spectrometer equipped with a cryoprobe. Four machine learning algorithms-support vector machine (SVM), partial least squares discriminant analysis (PLS-DA), random forest (RF), and logistic regression (LR), were applied to develop the model for identifying metabolomic biomarkers in cervicovaginal fluid for EC detection. RESULTS: A total of 54 women were eligible for the final analysis, with 21 EC and 33 non-EC. From 29 identified metabolites in cervicovaginal fluid samples, the top-ranking metabolites chosen through SVM, RF and PLS-DA which existed in independent metabolic pathways, i.e. phosphocholine, malate, and asparagine, were selected to build the prediction model. The SVM, PLS-DA, RF, and LR methods all yielded area under the curve values between 0.88 and 0.92 in the training dataset. In the testing dataset, the SVM and RF methods yielded the highest accuracy of 0.78 and the specificity of 0.75 and 0.80, respectively. CONCLUSION: Phosphocholine, asparagine, and malate from cervicovaginal fluid, which were identified and independently validated through models built using machine learning algorithms, are promising metabolomic biomarkers for the detection of EC using NMR spectroscopy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Líquidos Corporales/química , Neoplasias Endometriales/diagnóstico , Metabolómica , Adulto , Anciano , Algoritmos , Biomarcadores de Tumor/análisis , Líquidos Corporales/metabolismo , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Persona de Mediana Edad , Espectroscopía de Protones por Resonancia Magnética , Máquina de Vectores de Soporte
14.
Pediatr Allergy Immunol ; 30(7): 689-697, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31206804

RESUMEN

BACKGROUND: A comprehensive metabolomics-based approach to address the impact of specific gut microbiota on allergen sensitization for childhood rhinitis and asthma is still lacking. METHODS: Eighty-five children with rhinitis (n = 27) and with asthma (n = 34) and healthy controls (n = 24) were enrolled. Fecal metabolomic analysis with 1 H-nuclear magnetic resonance (NMR) spectroscopy and microbiome composition analysis by bacterial 16S rRNA sequencing were performed. An integrative analysis of their associations with allergen-specific IgE levels for allergic rhinitis and asthma was also assessed. RESULTS: Amino acid, ß-alanine, and butanoate were the predominant metabolic pathways in the gut. Among them, amino acid metabolism was negatively correlated with the phylum Firmicutes, which was significantly reduced in children with rhinitis and asthma. Levels of histidine and butyrate metabolites were significantly reduced in children with rhinitis (P = 0.029) and asthma (P = 0.009), respectively. In children with asthma, a reduction in butyrate-producing bacteria, including Faecalibacterium and Roseburia spp., and an increase in Clostridium spp. were negatively correlated with fecal amino acids and butyrate, respectively (P < 0.01). Increased Escherichia spp. accompanied by increased ß-alanine and 4-hydroxybutyrate appeared to reduce butyrate production. Low fecal butyrate was significantly associated with increased total serum and mite allergen-specific IgE levels in children with asthma (P < 0.05). CONCLUSION: A reduced fecal butyrate is associated with increased mite-specific IgE levels and the risk of asthma in early childhood. Fecal ß-alanine could be a specific biomarker connecting the metabolic dysbiosis of gut microbiota, Clostridium and Escherichia spp., in childhood asthma.


Asunto(s)
Asma/metabolismo , Butiratos/metabolismo , Disbiosis/metabolismo , Microbioma Gastrointestinal/fisiología , Rinitis Alérgica/metabolismo , Animales , Antígenos Dermatofagoides/inmunología , Asma/epidemiología , Biomarcadores/metabolismo , Ácido Butírico/metabolismo , Niño , Preescolar , Disbiosis/epidemiología , Heces/microbiología , Femenino , Humanos , Inmunoglobulina E/metabolismo , Masculino , Metaboloma , Pyroglyphidae/inmunología , Rinitis Alérgica/epidemiología , Transducción de Señal , beta-Alanina/metabolismo
15.
World Allergy Organ J ; 12(3): 100021, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30937143

RESUMEN

BACKGROUND: There is increasing evidence linking alterations of the gut microbial composition during early infancy to the development of atopic diseases and asthma. However, few studies have addressed the association of dysbiotic gut microbiota with allergic reactions through evaluation of feces in young children with allergic airway diseases. METHODS: We sought to evaluate relationships among gut microbiota, total fecal immunoglobulin E (IgE) levels, serum allergic sensitization, and their relevance to childhood allergic rhinitis and asthma. Microbial composition and diversity were analyzed with Illumina-based 16S rRNA gene sequencing of 89 stool samples collected from children with asthma (n = 35) and allergic rhinitis (n = 28), and from healthy controls (n = 26). Data analysis was performed using Quantitative Insights into Microbial Ecology (QIIME) software. RESULTS: A significantly lower abundance of organisms of the phylum Firmicutes were found in children with asthma and allergic rhinitis than in the healthy controls. Relatively lower Chao1 and Shannon indices were also found in children with allergic airway diseases but without any significant difference. Total fecal IgE levels in early childhood were strongly correlated with serum D. pteronyssinus- and D. farinae-specific IgE but not with food-specific IgE levels. In comparison with healthy controls, the genus Dorea was less abundant and negatively correlated with total fecal IgE levels in children with rhinitis, whereas the genus Clostridium was abundant and positively correlated with fecal IgE levels in children with asthma. CONCLUSIONS: An interaction between particular subsets of gut microbial dysbiosis and IgE-mediated responses to allergens may contribute to the susceptibility to allergic rhinitis and asthma in early childhood.

16.
World J Gastrointest Oncol ; 11(3): 181-194, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30918592

RESUMEN

BACKGROUND: Based on the breakthrough of genomics analysis, The Cancer Genome Atlas Research Group recently proposed an integrative genomic analysis, dividing gastric cancer (GC) into four subtypes, characterized by the chromosomal instability (CIN) status. However, the CIN status of GC is still vaguely characterized and lacking the valuable easy-to-use CIN markers to diagnosis in molecular and histological detection. AIM: To explore the associations of CIN with downstream lipidomics profiles. METHODS: We collected cancerous and noncancerous tissue samples from 18 patients with GC; the samples were divided into CIN and non-CIN types based on the system of The Cancer Genome Atlas Research Group and 409 sequenced oncogenes and tumor suppressor genes. We identified the lipidomics profiles of the GC samples and samples of their adjacent noncancerous tissues by using liquid chromatography-mass spectrometry. Furthermore, we selected leading metabolites based on variable importance in projection scores of > 1.0 and P < 0.05. RESULTS: Twelve men and six women participated in this study; the participants had a median age of 67.5 years (range, 52-87 years) and were divided into CIN (n = 9) and non-CIN (n = 9) groups. The GC samples exhibited distinct profiles of lysophosphocholine, phosphocholine, phosphatidylethanolamine, phosphatidylinositol, phosphoserine, sphingomyelin, ceramide, and triglycerides compared with their adjacent noncancerous tissues. The glycerophospholipid levels (phosphocholine, phosphatidylethanolamine, and phosphatidylinositol) were 1.4- to 2.3-times higher in the CIN group compared with the non-CIN group (P < 0.05). Alterations in the glycerolipid and glycerophospholipid pathways indicated progression of GC toward CIN. CONCLUSION: The lipidomics profiles of GC samples were distinct from those of their adjacent noncancerous tissues. CIN status of GC is primarily associated with downstream lipidomics in the glycerophospholipid pathway.

17.
J Proteome Res ; 18(3): 1248-1254, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30757903

RESUMEN

Fibrin formation in infectious parapneumonic effusion (IPE) characterizes complicated parapneumonic effusion and is important for providing guidelines for the management of IPEs that require aggressive interventions. We aim to identify metabolic mechanisms associated with bacterial invasion, inflammatory cytokines, and biochemical markers in cases of fibrinous infectious pleural effusions in children with pneumonia. Pleural fluid metabolites were determined by 1H nuclear magnetic resonance spectroscopy. Metabolites that contributed to the separation between fibrinous and nonfibrinous IPEs were identified using supervised partial least squares discriminant analysis ( Q2/ R2 = 0.84; Ppermutation < 0.01). IL-1ß in the inflammatory cytokines and glucose in the biochemical markers were significantly correlated with 11 and 9 pleural fluid metabolites, respectively, and exhibited significant overlaps. Four metabolites, including glucose, lactic acid, 3-hydroxybutyric acid, and hypoxanthine, were significantly correlated with plasminogen activator inhibitor type 1 in the fibrinolytic system enzymes. Metabolic pathway analysis revealed that anaerobic bacterial fermentation with increased lactic acid and butyric acid via glucose consumption and adenosine triphosphate hydrolysis with increased hypoxanthine appeared to be associated with fibrinous IPE. Our results demonstrate that an increase in lactic acid anaerobic fermentation and hypoxanthine accumulation under hypoxic conditions are associated with fibrin formation in IPE, representing advanced pleural inflammatory progress in children with pneumonia.


Asunto(s)
Fibrina/metabolismo , Hipoxantina/metabolismo , Pulmón/diagnóstico por imagen , Derrame Pleural/metabolismo , Neumonía/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Adolescente , Anaerobiosis/genética , Bacterias Anaerobias/metabolismo , Bacterias Anaerobias/patogenicidad , Niño , Preescolar , Citocinas/genética , Citocinas/metabolismo , Femenino , Fermentación , Fibrina/genética , Fibrinólisis/genética , Glucosa/metabolismo , Humanos , Lactante , Ácido Láctico/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Metabolómica/métodos , Derrame Pleural/microbiología , Derrame Pleural/patología , Neumonía/diagnóstico por imagen , Neumonía/microbiología , Neumonía/patología
18.
World J Gastroenterol ; 24(33): 3760-3769, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30197481

RESUMEN

AIM: To explore the correlation of metabolomics profiles of gastric cancer (GC) with its chromosomal instability (CIN) status. METHODS: Nineteen GC patients were classified as CIN and non-CIN type by The Cancer Genome Atlas Research Group system, based on 409 oncogenes and tumor suppressor genes sequenced. The aqueous metabolites of the GC tumor and its surrounding adjacent healthy tissues were identified through liquid chromatography-mass spectrometry. Groups were compared by defining variable importance in projection score of > 1.2, a fold change value or its reciprocal of > 1.2, and a P value of < 0.05 as a significant difference. RESULTS: In total, twelve men and seven women were enrolled, with a median age of 66 years (range, 47-87 years). The numbers of gene alterations in the CIN GC group were significantly higher than those in the non-CIN GC (32-218 vs 2-17; P < 0.0005). Compared with the adjacent healthy tissues, GC tumors demonstrated significantly higher aspartic acid, citicoline, glutamic acid, oxidized glutathione, succinyladenosine, and uridine diphosphate-N-acetylglucosamine levels, but significantly lower butyrylcarnitine, glutathione hydroxyhexanoycarnitine, inosinic acid, isovalerylcarnitine, and threonine levels (all P < 0.05). CIN tumors contained significantly higher phosphocholine and uridine 5'-monophosphate levels but significantly lower beta-citryl-L-glutamic acid levels than did non-CIN tumors (all P < 0.05). CIN GC tumors demonstrated additional altered pathways involving alanine, aspartate, and glutamate metabolism, glyoxylate and dicarboxylate metabolism, histidine metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. CONCLUSION: Metabolomic profiles of GC tumors and the adjacent healthy tissue are distinct, and the CIN status is associated with downstream metabolic alterations in GC.


Asunto(s)
Inestabilidad Cromosómica , Genes Supresores de Tumor , Redes y Vías Metabólicas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Mutación , Estudios Prospectivos , Estómago/patología , Neoplasias Gástricas/patología
19.
Pediatr Allergy Immunol ; 29(5): 496-503, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679407

RESUMEN

BACKGROUND: Several metabolites and altered metabolic pathways have been reported to be associated with asthma. However, longitudinal analysis of the dynamics of metabolites contributing to the development of asthma has not yet been fully clarified. METHODS: We sought to identify the metabolic mechanisms underlying asthma development in early childhood. Thirty children with asthma and paired healthy controls from a prospective birth cohort were enrolled. Time series analysis of urinary metabolites collected at ages 1, 2, 3, and 4 years was assessed using 1 H nuclear magnetic resonance (NMR) spectroscopy coupled with partial least squares discriminant analysis (PLS-DA). Metabolites identified were studied in relation to changes over time in a linear mixed model for repeated measures. RESULTS: A total of 172 urine samples collected from the enrolled children were analyzed. Urinary metabolomics identified four metabolites significantly associated with childhood asthma development, with longitudinal analysis. Among them, dimethylamine, a metabolite produced by intestinal bacteria, appeared to shift from higher to lower level during asthma development. A persistent lower level of 1-methylnicotinamide and allantoin was found in children with asthma, with a peak difference at age 3 years (P = .032 and P = .021, respectively). Furthermore, a significant inverse correlation was found between allantoin and house dust mite sensitization (Spearman's r = -.297 P = .035). CONCLUSIONS: Longitudinal urinary metabolomic profiling provides a link of microbe-environment interactions in the development of childhood asthma. 1-Methylnicotinamide and allantoin may participate in allergic reactions in response to allergen exposure, potentially serving as specific biomarkers for asthma.


Asunto(s)
Asma/inmunología , Hipersensibilidad/inmunología , Metabolómica/métodos , Alantoína/orina , Animales , Antígenos Dermatofagoides/inmunología , Biomarcadores/orina , Estudios de Casos y Controles , Preescolar , Estudios de Cohortes , Dimetilaminas/orina , Femenino , Microbioma Gastrointestinal , Humanos , Lactante , Estudios Longitudinales , Espectroscopía de Resonancia Magnética , Masculino , Estudios Prospectivos , Pyroglyphidae/inmunología
20.
Sci Rep ; 6: 24930, 2016 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-27103079

RESUMEN

Metabolic markers in biofluids represent an attractive tool for guiding clinical management. The aim of this study was to identify metabolic mechanisms during the progress of pleural infection in children with Streptococcus pneumoniae pneumonia. Forty children diagnosed with pneumococcal pneumonia were enrolled and analysis of pleural fluid metabolites categorized by complicated parapneumonic effusions (CPE) and non-CPE was assessed by using (1)H-NMR spectroscopy. Multivariate statistical analysis including principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were performed. Metabolites identified were studied in relation to subsequent intervention procedures by receiver operating characteristic (ROC) curve analysis. Ten metabolites significantly different between CPE and non-CPE were identified. A significantly lower level of glucose for glycolysis was found in CPE compared to non-CPE. Six metabolites involving bacterial biosynthesis and three metabolites involving bacterial fermentation were significantly higher in CPE compared to non-CPE. Glucose and 3-hydroxybutyric acid were the metabolites found to be useful in discriminating from receiving intervention procedures. Metabolic profiling of pleural fluid using (1)H-NMR spectroscopy provides direct observation of bacterial metabolism in the progress of pneumococcal pneumonia. An increase in the metabolism of butyric acid fermentation of glucose could potentially lead to the need of aggressive pleural drainage.


Asunto(s)
Biomarcadores/análisis , Exudados y Transudados/química , Metaboloma , Derrame Pleural/patología , Neumonía Neumocócica/complicaciones , Streptococcus pneumoniae/metabolismo , Niño , Humanos , Espectroscopía de Resonancia Magnética , Derrame Pleural/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...