Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398755

RESUMEN

The development of severe multidrug-resistant bacterial infections has recently intensified because of the COVID-19 pandemic. According to the guidelines issued by the World Health Organization (WHO), routine antibiotic administration is not recommended for patients with supposed or confirmed mild SARS-CoV-2 infection or pneumonia, unless bacterial infection is clinically suspected. However, recent studies have pointed out that the proportion of non-essential antibiotic use in patients infected with SARS-CoV-2 remains high. Therefore, the silent pandemic of antibiotic resistance remains a pressing issue regardless of the present threats presented by the COVID-19 pandemic. To prevent or delay entry into the postulated post-antibiotic era, the long-term advocacy for the rational use of antibiotics, the optimization of infection control procedures, and the development of new antibacterial agents and vaccines should be underscored as vital practices of the antibacterial toolbox. Recently, the development of vaccines and monoclonal antibodies has gradually received attention following the advancement of biotechnology as well as enhanced drug discovery and development in cancer research. Although decent progress has been made in laboratory-based research and promising results have been obtained following clinical trials of some of these products, challenges still exist in their widespread clinical applications. This article describes the current advantages of antibacterial monoclonal antibodies, the development of associated clinical trials, and some perceived future perspectives and challenges. Further, we anticipate the development of more therapeutic agents to combat drug-resistant bacterial infections as well as to increase the resilience of current or novel agents/strategies.

2.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38108010

RESUMEN

The advent of virtual reality (VR) in education offers unique possibilities for facilitating cooperative learning strategies, particularly in fields demanding intricate spatial understanding, such as gross anatomy. This study investigates the impact of integrating cooperative learning strategies within a VR-based gross anatomy curriculum, focusing on enhancing students' anatomy knowledge and skills. We analyzed the performance of two cohorts of first-year nursing students across five semesters (2016-2020), where traditional learning methods were used in the first three semesters (2016-2018), and a VR-based cooperative learning approach was adopted in the last two semesters (2019-2020). Our findings suggest that the VR-based cooperative learning group achieved significantly higher scores in their gross anatomy laboratory courses compared to their counterparts learning through traditional methods. This research provides valuable insights into how the integration of VR technology and cooperative learning strategies can not only enhance learning outcomes but also improve the VR learning experience by reducing motion sickness. It accentuates the potential of VR-based cooperative learning as an impactful educational tool in anatomy education. Future research should further explore the optimal integration of VR and cooperative learning strategies in diverse course types and their potential to enhance educational outcomes and the learning experience.

3.
mSphere ; 8(6): e0040023, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38014949

RESUMEN

IMPORTANCE: Elizabethkingia anophelis, a Gram-negative pathogen, causes infections such as bacteraemia, pneumonia, and neonatal meningitis. The pathogen resists most antimicrobial classes, making novel approaches urgently needed. In natural settings, Gram-negative bacteria secrete outer membrane vesicles (OMVs) that carry important molecules in the bacterial life cycle. These OMVs are enriched with proteins involved in virulence, survival, and carbohydrate metabolism, making them a promising source for vaccine development against the pathogen. This study investigated the efficacy of imipenem-induced OMVs (iOMVs) as a vaccine candidate against E. anophelis infection in a mouse pneumonia model. Mice immunized with iOMVs were completely protected during lethal-dose challenges. Passive immunization with hyperimmune sera and splenocytes conferred protection against lethal pneumonia. Further investigation is needed to understand the mechanisms underlying the protective effects of iOMV-induced passive immunity, such as the action on specific antibody subclasses or T cell subsets.


Asunto(s)
Flavobacteriaceae , Neumonía , Animales , Ratones , Inmunidad , Vacunas Bacterianas
4.
Micromachines (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36295958

RESUMEN

Ablation is a clinical cancer treatment, but some demands are still unsatisfied, such as electromagnetic interferences amongst multiple ablation needles during large tumour treatments. This work proposes a physical synthesis for composite particles of biocompatible iron oxide particles and liquid metal gallium (Ga) with different alternative-current (AC)-magnetic-field-induced heat mechanisms of magnetic particle hyperthermia and superior resistance heat. By some imaging, X-ray diffraction, and vibrating sample magnetometer, utilised composite particles were clearly identified as the cluster of few iron oxides using the small weight ratio of high-viscosity liquid metal Ga as conjugation materials without surfactants for physical targeting of limited fluidity. Hence, well penetration inside the tissue and the promotion rate of heat generation to fit the ablation requirement of at least 60 °C in a few seconds are achieved. For the injection and the post-injection magnetic ablations, the volume variation ratios of mice dorsal tumours on Day 12 were expressed at around one without tumour growth. Its future powerful potentiality is expected through a percutaneous injection.

5.
Microbiol Spectr ; 10(4): e0026222, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35852325

RESUMEN

Elizabethkingia anophelis, a nonfermenting Gram-negative bacterium, causes life-threatening health care-associated infections. E. anophelis harbors multidrug resistance (MDR) genes and is intrinsically resistant to various classes of antibiotics. Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and contain materials involved in bacterial survival and pathogenesis. OMVs specialize and tailor their functions by carrying different components to challenging environments and allowing communication with other microorganisms or hosts. In this study, we sought to understand the characteristics of E. anophelis OMVs under different antibiotic stress conditions. An extensively drug-resistant clinical isolate, E. anophelis C08, was exposed to multiple antibiotics in vitro, and its OMVs were characterized using nanoparticle tracking analysis, transmission electron microscopy, and proteomic analysis. Protein functionality analysis showed that the OMVs were predominantly involved in metabolism, survival, defense, and antibiotic resistance processes, such as the Rag/Sus family, the chaperonin GroEL, prenyltransferase, and an HmuY family protein. Additionally, a protein-protein interaction network demonstrated that OMVs from imipenem-treated E. anophelis showed significant enrichments in the outer membrane, adenyl nucleotide binding, serine-type peptidase activity, the glycosyl compound metabolic process, and cation binding proteins. Collectively, the OMV proteome expression profile indicates that the role of OMVs is immunologically relevant and related to bacterial survival in antibiotic stress environments rather than representing a resistance point. IMPORTANCE Elizabethkingia anophelis is a bacterium often associated with nosocomial infection. This study demonstrated that imipenem-induced E. anophelis outer membrane vesicles (OMVs) are immunologically relevant and crucial for bacterial survival under antibiotic stress conditions rather than being a source of antibiotic resistance. Furthermore, this is the first study to discuss the protein-protein interaction network of the OMVs released by E. anophelis, especially under antibiotic stress. Our findings provide important insights into clinical antibiotic stewardship.


Asunto(s)
Flavobacteriaceae , Proteómica , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Imipenem
7.
Biomed Eng Online ; 21(1): 38, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715781

RESUMEN

BACKGROUND: Although the powerful clinical effects of radiofrequency and microwave ablation have been established, such ablation is associated with several limitations, including a small ablation size, a long ablation time, the few treatment positioning, and biosafety risks. To overcome these limitations, biosafe and efficient magnetic ablation was achieved in this study by using biocompatible liquid gallium as an ablation medium and a contrast medium for imaging. RESULTS: Magnetic fields with a frequency (f) lower than 200 kHz and an amplitude (H) × f value lower than 5.0 × 109 Am-1 s-1 were generated using the proposed method. These fields could generate an ablation size of 3 cm in rat liver lobes under a temperature of approximately 300 °C and a time of 20 s. The results of this study indicate that biomedical gallium can be used as a contrast medium for the positioning of gallium injections and the evaluation of ablated tissue around a target site. Liquid gallium can be used as an ablation medium and imaging contrast medium because of its stable retention in normal tissue for at least 3 days. Besides, the high anticancer potential of gallium ions was inferred from the self-degradation of 100 µL of liquid gallium after around 21 days of immersion in acidic solutions. CONCLUSIONS: The rapid wireless ablation of large or multiple lesions was achieved through the simple multi-injection of liquid gallium. This approach can replace the currently favoured procedure involving the use of multiple ablation probes, which is associated with limited benefits and several side effects. METHODS: Magnetic ablation was confirmed to be highly efficient by the consistent results obtained in the simulation and in vitro tests of gallium and iron oxide as well as the electromagnetic specifics and thermotherapy performance comparison detailed in this study Ultrasound imaging, X-ray imaging, and magnetic resonance imaging were found to be compatible with the proposed magnetic ablation method. Self-degradation analysis was conducted by mixing liquid gallium in acidic solutions with a pH of approximately 5-7 (to imitate a tumour-containing microenvironment). X-ray diffraction was used to identify the gallium oxides produced by degraded gallium ions.


Asunto(s)
Técnicas de Ablación , Ablación por Catéter , Galio , Animales , Galio/farmacología , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratas , Ultrasonografía
8.
Cells ; 11(5)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269438

RESUMEN

Impaired wound healing is an ongoing issue that cancer patients undergoing chemotherapy or radiotherapy face. Our previous study regarding lung-cancer-associated pleural fluid (LCPF) demonstrated its propensity to promote endothelial proliferation, migration, and angiogenesis, which are crucial features during cutaneous wound healing. Therefore, the current study aimed to investigate the effect of pleural fluid on cutaneous wound closure in vitro and in vivo using HaCaT keratinocytes and a full-thickness skin wound model, respectively. Both heart-failure-associated pleural fluid (HFPF) and LCPF were sequentially centrifuged and filtered to obtain a cell-free status. Treatment with HFPF and LCPF homogeneously induced HaCaT proliferation with cell cycle progression, migration, and MMP2 upregulation. Western blotting revealed increased PI3K/Akt phosphorylation and VEGFR2/VEGFA expression in HaCaT cells. When treated with the PI3K inhibitor, LCPF-induced keratinocyte proliferation was attenuated with decreased pS6 levels. By applying the VEGFR2 inhibitor, LCPF-induced keratinocyte proliferation was ameliorated by pS6 and MMP2 downregulation. The effect of LCPF-induced cell junction rearrangement was disrupted by co-treatment with a VEGFR2 inhibitor. Compared with a 0.9% saline dressing, LCPF significantly accelerated wound closure and re-epithelization when used as a dressing material in a full-thickness wound model. Histological analysis revealed increased neo-epidermis thickness and dermis collagen synthesis in the LCPF-treated group. Furthermore, LCPF treatment activated basal keratinocytes at the wound edge with the upregulation of Ki-67, VEGFA, and MMP2. Our preliminaries provided the benefit of wet dressing with pleural fluid to improve cutaneous wound closure through enhanced re-epithelization and disclosed future autologous application in cancer wound treatment.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proliferación Celular , Humanos , Queratinocitos/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cicatrización de Heridas/fisiología
9.
J Microbiol Immunol Infect ; 55(1): 51-59, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33610508

RESUMEN

BACKGROUND: Tigecycline is an antibiotic that well tolerated for treating complicated infections. It has received attention as an anti-cancer agent and expected to solve two major obstacles, sides effects that accompany chemotherapy and drug resistance, in the breast cancer treatment. However, previous studies reported that the levels in the blood are typically low of tigecycline, so higher doses are needed to treat cancer, that may increase the risk of side effects. To achieve better anti-cancer effects for tigecycline, we need to find a novel adjunct agent. METHODS: In this study, we used different concentration of pyrvinium pamoate combined with tigecycline to treat cell. And assess the effect of two drugs in inhibit cell proliferation, induce cell autophagy, or increase cell apoptosis to evaluate the consequent of combined therapy. RESULTS: We observed that after the combined therapy, the cell cycle arrest at G1/s phase, the level of p21 increased, but decreased the levels of CDK2. Others, two drugs via different mechanisms to inhibit cancer cell proliferation and with selective cytotoxic to different cell lines. That could enhance the effect of breast cancer treatment. CONCLUSION: Combining low dose of tigecycline use with pyrvinium pamoate is a novel approach for breast cancer treatment. Appropriate combined therapy in breast cancer is recommended to improve outcomes. Other problems like drug resistance occur in patients or the microbes surrounding breast tissues would confer susceptibility to cancers then influence the effectiveness of treatment, which could be improved through combined therapy.


Asunto(s)
Neoplasias de la Mama , Enfermedades Transmisibles , Compuestos de Pirvinio , Neoplasias de la Mama/tratamiento farmacológico , Enfermedades Transmisibles/tratamiento farmacológico , Femenino , Humanos , Compuestos de Pirvinio/farmacología , Compuestos de Pirvinio/uso terapéutico , Tigeciclina
11.
Biosensors (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677319

RESUMEN

Infections of orchids by the Odontoglossum ringspot virus or Cymbidium mosaic virus cause orchid disfiguration and are a substantial source of economic loss for orchid farms. Although immunoassays can identify these infections, immunoassays are expensive, time consuming, and labor consuming and limited to sampling-based testing methods. This study proposes a noncontact inspection platform that uses a spectrometer and Android smartphone. When orchid leaves are illuminated with a handheld optical probe, the Android app based on the Internet of Things and artificial intelligence can display the measured florescence spectrum and determine the infection status within 3 s by using an algorithm hosted on a remote server. The algorithm was trained on optical data and the results of polymerase chain reaction assays. The testing accuracy of the algorithm was 89%. The area under the receiver operating characteristic curve was 91%; thus, the platform with the algorithm was accurate and convenient for infection screening in orchids.


Asunto(s)
Orchidaceae , Teléfono Inteligente , Inteligencia Artificial , Enfermedades de las Plantas/virología , Reacción en Cadena de la Polimerasa , Potexvirus , Tobamovirus
12.
J Virol ; 95(17): e0236420, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133901

RESUMEN

Nervous necrosis virus (NNV) belongs to the Betanodavirus genus of the Nodaviridae family and is the main cause of viral nervous necrosis disease in marine fish larvae and juveniles worldwide. The NNV virion contains two positive-sense, single-stranded RNA genomes, which encode RNA-dependent RNA polymerase, coat protein, and B2 protein. Interestingly, NNV infection can shut off host translation in orange-spotted grouper (Epinephelus coioides) brain cells; however, the detailed mechanisms of this action remain unknown. In this study, we discovered that the host translation factor, polyadenylate binding protein (PABP), is a key target during NNV takeover of host translation machinery. Additionally, ectopic expression of NNV coat protein is sufficient to trigger nuclear translocalization and degradation of PABP, followed by translation shutoff. A direct interaction between NNV coat protein and PABP was demonstrated, and this binding requires the NNV coat protein N-terminal shell domain and PABP proline-rich linker region. Notably, we also showed that degradation of PABP during later stages of infection is mediated by the ubiquitin-proteasome pathway. Thus, our study reveals that the NNV coat protein hijacks host PABP, causing its relocalization to the nucleus and promoting its degradation to stimulate host translation shutoff. IMPORTANCE Globally, more than 200 species of aquacultured and wild marine fish are susceptible to NNV infection. Devastating outbreaks of this virus have been responsible for massive economic damage in the aquaculture industry, but the molecular mechanisms by which NNV affects its host remain largely unclear. In this study, we show that NNV hijacks translation in host brain cells, with the viral coat protein binding to host PABP to promote its nuclear translocalization and degradation. This previously unknown mechanism of NNV-induced host translation shutoff greatly enhances the understanding of NNV pathogenesis and provides useful insights and novel tools for development of NNV treatments, such as the use of orange-spotted grouper brain cells as an in vitro model system.


Asunto(s)
Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Enfermedades de los Peces/inmunología , Nodaviridae/inmunología , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , Infecciones por Virus ARN/veterinaria , Animales , Lubina , Proteínas de la Cápside/genética , Proteínas de Unión a Poli(A)/genética , Transporte de Proteínas , Infecciones por Virus ARN/inmunología , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo
13.
Drug Deliv Transl Res ; 11(4): 1532-1544, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34125402

RESUMEN

There is an urgent need for treatments for hydrofluoric acid (HF) burns and their derivative problems that prevent hydrogen ion dissociation and fluoride ion binding to tissues. This study evaluated the ability of chitosan-based hydrogels combined with a buffer solution containing either boric acid or Tris and calcium gluconate (CHS-BA-CG and CHS-Tris-CG) to repair HF burn wounds and prevent wound infections. We assessed calcium release rates and biocompatability and constructed a mouse HF burn model to assess the tissue repair effects of the hydrogels. Finally, we performed disc diffusion tests from burn tissue and quantified the bacterial counts to assess the anti-infection properties of the hydrogels. Calcium was gradually released in the CHS-BA-CG and CHS-Tris-CG groups (73% and 43%, respectively, after 48 h). The cell viabilities at 48 h after HF burn in these groups were significantly higher than those in the phosphate-buffered saline (PBS) and CG-treated groups. Histopathological evaluation showed a clear boundary between the epidermal and dermal layers in both CHS-BA-CG and CHS-Tris-CG-treated groups, indicating their effectiveness in tissue repair. In the disc diffusion test, CHS-BA-CG and CHS-Tris-CG exhibited larger inhibition zones against Acinetobacter baumannii than those for PBS and CG. The bacterial counts on HF burn wounds were significantly lower in the CHS-BA-CG and CHS-Tris-CG-treated groups than those in the PBS and CG-treated groups. The in vitro studies demonstrated the biocompatibility and antimicrobial effects of the CHS-BA-CG and CHS-Tris-CG hydrogels. Both gels also demonstrated tissue repair and anti-infection effects. Thus, chitosan-based hydrogels may be candidates for HF burn therapy.


Asunto(s)
Quemaduras Químicas , Quemaduras , Quitosano , Infección de Heridas , Animales , Quemaduras/tratamiento farmacológico , Quemaduras/microbiología , Ácido Fluorhídrico , Hidrogeles/química , Ratones , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Infección de Heridas/prevención & control
15.
J Antimicrob Chemother ; 76(2): 451-459, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33057603

RESUMEN

BACKGROUND: According to our preliminary study, BLI-489 has the potential to inhibit the hydrolysing activity of OXA-51-like ß-lactamase produced by carbapenem-resistant Acinetobacter baumannii (CRAb). OBJECTIVES: In the present study, the in vitro and in vivo activities of imipenem combined with BLI-489 against CRAb producing carbapenem-hydrolysing class D ß-lactamases (CHDLs), namely OXA-23, OXA-24, OXA-51 and OXA-58, were determined. METHODS: A chequerboard analysis of imipenem and BLI-489 was performed using 57 and 7 clinical CRAb isolates producing different CHDLs and MBLs, respectively. Four representative strains harbouring different CHDL genes were subjected to a time-kill assay to evaluate the synergistic effects. An in silico docking analysis was conducted to simulate the interactions between BLI-489 and the different families of CHDLs. The in vivo activities of this combination were assessed using a Caenorhabditis elegans survival assay and a mouse pneumonia model. RESULTS: Chequerboard analysis showed that imipenem and BLI-489 had a synergistic effect on 14.3, 92.9, 100, 16.7 and 100% of MBL-, OXA-23-, OXA-24-like-, OXA-51-like- and OXA-58-producing CRAb isolates, respectively. In the time-kill assay, imipenem and BLI-489 showed synergy against OXA-24-like-, OXA-51-like- and OXA-58-, but not OXA-23-producing CRAb isolates after 24 h. The in silico docking analysis showed that BLI-489 could bind to the active sites of OXA-24 and OXA-58 to confer strong inhibition activity. The combination of imipenem and BLI-489 exhibited synergistic effects for the rescue of CRAb-infected C. elegans and mice. CONCLUSIONS: Imipenem combined with BLI-489 has synergistic effects against CHDL-producing CRAb isolates.


Asunto(s)
Acinetobacter baumannii , Animales , Antibacterianos/farmacología , Proteínas Bacterianas , Caenorhabditis elegans , Imipenem/farmacología , Lactamas , Ratones , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
16.
Front Genet ; 11: 568192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133154

RESUMEN

Cumulative studies have shown that RNA binding proteins (RBPs) play an important role in numerous malignant tumors and are related to the occurrence and progression of tumors. However, the role of RBPs in kidney renal clear cell carcinoma (KIRC) is not fully understood. In this study, we first downloaded gene expression data and corresponding clinical information of KIRC from the Cancer Genome Atlas (TCGA) database, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) database, respectively. A total of 137 differentially expressed RBPs (DERBPs) were then identified between normal and tumor tissue, including 38 downregulated and 99 upregulated RBPs. Nine RBPs (EIF4A1, RPL36A, EXOSC5, RPL28, RPL13, RPS19, RPS2, EEF1A2, and OASL) were served as prognostic genes and exploited to construct a prognostic model through survival analysis. Kaplan-Meier curves analysis showed that the low-risk group had a better survival outcome when compared with the high-risk group. The area under the curve (AUC) value of the prognostic model was 0.713 in the TCGA data set (training data set), 0.706 in the ICGC data set, and 0.687 in the GSE29609 data set, respectively, confirming a good prognostic model. The prognostic model was also identified as an independent prognostic factor for KIRC survival by performing cox regression analysis. In addition, we also built a nomogram relying on age and the prognostic model and internal validation in the TCGA data set. The clinical benefit of the prognostic model was revealed by decision curve analysis (DCA). Gene set enrichment analysis revealed several crucial pathways (ERBB signaling pathway, pathways in cancer, MTOR signaling pathway, WNT signaling pathway, and TGF BETA signaling pathway) that may explain the underlying mechanisms of KIRC. Furthermore, potential drugs for KIRC treatment were predicted by the Connectivity Map (Cmap) database based on DERBPs, including several important drugs, such as depudecin and vorinostat, that could reverse KIRC gene expression, which may provide reference for the treatment of KIRC. In summary, we developed and validated a robust nine-RBP signature for KIRC prognosis prediction. A nomogram with risk score and age can be applied to promote the individualized prediction of overall survival in patients with KIRC. Moreover, the two drugs depudecin and vorinostat may contribute to KIRC treatment.

17.
Front Microbiol ; 11: 536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296411

RESUMEN

Antimicrobial-resistant (AMR) bacterial infections, including those caused by Acinetobacter baumannii, have emerged as a clinical crisis worldwide. Immunization with AMR determinants has been suggested as a novel approach to combat AMR bacteria, but has not been validated. The present study targeted tigecycline (TGC) resistance determinants in A. baumannii to test the feasibility of this approach. Using bioinformatic tools, four candidates, AdeA, AdeI, AdeK, and TolC, belonging to the resistance-nodulation-division (RND) efflux pump were identified as highly conserved and exposed antigens from 15 A. baumannii genomes. Antisera generated from recombinant proteins showed the capability to reserve Hoechst 33342, a substrate of the efflux pump, in bacterial cells. The rTolC antisera had the highest complement-dependent killing and opsonophagocytosis effect compared to the sera from phosphate-buffered saline immunized mice. Among the antisera, anti-rAdeK-specific antisera decreased the minimal inhibitory concentration of TGC in 26.7% of the tested isolates. Immunization with rAdeK significantly potentiated TGC efficacy in treating TGC-resistant A. baumannii pneumonia in the murine model. The bacterial load (7.5 × 105 vs. 3.8 × 107, p < 0.01) and neutrophil infiltration in the peri-bronchial vasculature region of immunized mice was significantly lower compared to the PBS-immunized mice when TGC was administrated concomitantly. Collectively, these results suggest that active immunization against resistance determinants might be a feasible approach to combat multidrug-resistant pathogens in high risk population.

18.
J Cell Physiol ; 235(9): 6085-6102, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31990056

RESUMEN

Apoptosis and fibrosis play a vital role in myocardial infarction (MI) induced tissue injury. Although microRNAs have been the focus of many studies on cardiac apoptosis and fibrosis in MI, the detailed effects of miR-26a is needed to further understood. The present study demonstrated that miR-26a was downregulated in ST-elevation MI (STEMI) patients and oxygen-glucose deprivation (OGD)-treated H9c2 cells. Downregulation of miR-26a was closely correlated with the increased expression of creatine kinase, creatine kinase-MB and troponin I in STEMI patients. Further analysis identified that ataxia-telangiectasia mutated (ATM) was a target gene for miR-26a based on a bioinformatics analysis. miR-26a overexpression effectively reduced ATM expression, apoptosis, and apoptosis-related proteins in OGD-treated H9c2 cells. In a mouse model of MI, the expression of miR-26a was significantly decreased in the infarct zone of the heart, whereas apoptosis and ATM expression were increased. miR-26a overexpression effectively reduced ATM expression and cardiac apoptosis at Day 1 after MI. Furthermore, we demonstrated that overexpression of miR-26a improved cardiac function and reduced cardiac fibrosis by the reduced expression of collagen type I and connective tissue growth factor (CTGF) in mice at Day 14 after MI. Overexpression of miR-26a or ATM knockdown decreased collagen I and CTGF expression in cultured OGD-treated cardiomyocytes. Taken together, these data demonstrate a prominent role for miR-26a in linking ATM expression to ischemia-induced apoptosis and fibrosis, key features of MI progression. miR-26a reduced MI development by affecting ATM expression and could be targeted in the treatment of MI.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , MicroARNs/genética , Infarto del Miocardio/genética , Miocardio/metabolismo , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/patología , Glucosa/metabolismo , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Ratas
19.
Clin Sci (Lond) ; 133(21): 2171-2187, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31696218

RESUMEN

Several diseases have been linked to particulate matter (PM) exposure. Outdoor activities, such as road running or jogging, are popular aerobic exercises due to few participatory limitations. Osteoarthritis (OA) is a progressive degenerative joint disease, usually observed at age 40, and not noticed before pain or diagnosis. Although exercise has health benefits, it is unclear whether outdoor jogging in higher PM (standard reference material 1649b, SRM 1649b) concentration environments could affect OA development or severity. Hence, a PM exposure monosodium iodoacetate (MIA)-induced OA animal jogged model was established for investigation. Results showed that high doses of PM (5 mg) significantly increased pro-inflammatory factors such as tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, and IL-6, and M1 macrophages in the lung region, also obtained in systemic IL-6 and TNF-α expressions in this MIA-OA rat model. Moreover, levels of osteocalcin, cartilage oligomeric matrix protein (COMP), and N-telopeptides of type I collagen were especially influenced in MIA+PM groups. Morphological and structural changes of the knee joint were detected by micro-computed tomography images (micro-CT) and immunohistochemistry. MIA + PM rats exhibited severe bone density decrease, cartilage wear, and structure damages, accompanied by lower levels of physical activity, than the sham group and groups receiving MIA or PM alone. The findings suggest that the severity of OA could be promoted by PM exposure with a PM concentration effect via systemic inflammatory mechanisms. To the best of our knowledge, this is the first study to provide direct effects of PM exposure on OA severity.


Asunto(s)
Artritis Experimental/etiología , Exposición por Inhalación/efectos adversos , Osteoartritis de la Rodilla/etiología , Material Particulado/efectos adversos , Animales , Artritis Experimental/sangre , Artritis Experimental/patología , Biomarcadores/sangre , Citocinas/sangre , Ácido Yodoacético , Articulación de la Rodilla/patología , Pulmón/metabolismo , Macrófagos/metabolismo , Masculino , Osteoartritis de la Rodilla/sangre , Osteoartritis de la Rodilla/patología , Condicionamiento Físico Animal , Ratas
20.
EBioMedicine ; 46: 236-247, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31401194

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a life-threatening disease, often leading to heart failure. Defining therapeutic targets at an early time point is important to prevent heart failure. METHODS: MicroRNA screening was performed at early time points after MI using paired samples isolated from the infarcted and remote myocardium of pigs. We also examined the microRNA expression in plasma of MI patients and pigs. For mechanistic studies, AAV9-mediated microRNA knockdown and overexpression were administrated in mice undergoing MI. FINDINGS: MicroRNAs let-7a and let-7f were significantly downregulated in the infarct area within 24 h post-MI in pigs. We also observed a reduction of let-7a and let-7f in plasma of MI patients and pigs. Inhibition of let-7 exacerbated cardiomyocyte apoptosis, induced a cardiac hypertrophic phenotype, and resulted in worsened left ventricular ejection fraction. In contrast, ectopic let-7 overexpression significantly reduced those phenotypes and improved heart function. We then identified TGFBR3 as a target of let-7, and found that induction of Tgfbr3 in cardiomyocytes caused apoptosis, likely through p38 MAPK activation. Finally, we showed that the plasma TGFBR3 level was elevated after MI in plasma of MI patients and pigs. INTERPRETATION: Together, we conclude that the let-7-Tgfbr3-p38 MAPK signalling plays an important role in cardiomyocyte apoptosis after MI. Furthermore, microRNA let-7 and Tgfbr3 may serve as therapeutic targets and biomarkers for myocardial damage. FUND: Ministry of Science and Technology, National Health Research Institutes, Academia Sinica Program for Translational Innovation of Biopharmaceutical Development-Technology Supporting Platform Axis, Thematic Research Program and the Summit Research Program, Taiwan.


Asunto(s)
Apoptosis/genética , Regulación de la Expresión Génica , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Animales , Biomarcadores , Modelos Animales de Enfermedad , Ecocardiografía , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Ratones , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Porcinos , Factores de Tiempo , Transducción Genética , Remodelación Ventricular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...