Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Pharmacol Ther ; 258: 108640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570075

RESUMEN

DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Metilación de ADN/efectos de los fármacos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida , Inmunoterapia/métodos
2.
Cancer Discov ; 14(3): 389-391, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426559

RESUMEN

SUMMARY: Murayama and colleagues establish DHX9 as an exciting new target to induce viral mimicry and downstream antitumor immunity. The potential for use in combination with existing immune therapies is especially exciting in SCLC, an immunologically cold and deadly disease. See related article by Murayama et al., p. 468 (10) .


Asunto(s)
ARN Helicasas DEAD-box , Neoplasias Pulmonares , Humanos , ARN Helicasas DEAD-box/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética
3.
Mob DNA ; 14(1): 19, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012685

RESUMEN

The conference "Transposable Elements at the Crossroads of Evolution, Health and Disease" was hosted by Keystone Symposia in Whistler, British Columbia, Canada, on September 3-6, 2023, and was organized by Kathleen Burns, Harmit Malik and Irina Arkhipova. The central theme of the meeting was the incredible diversity of ways in which transposable elements (TEs) interact with the host, from disrupting the existing genes and pathways to creating novel gene products and expression patterns, enhancing the repertoire of host functions, and ultimately driving host evolution. The meeting was organized into six plenary sessions and two afternoon workshops with a total of 50 invited and contributed talks, two poster sessions, and a career roundtable. The topics ranged from TE roles in normal and pathological processes to restricting and harnessing TE activity based on mechanistic insights gained from genetic, structural, and biochemical studies.

4.
Mob DNA ; 14(1): 18, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990347

RESUMEN

In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.

5.
bioRxiv ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609261

RESUMEN

Cell-intrinsic mechanisms of immunogenicity in ovarian cancer (OC) are not well understood. The presence of damaging mutations in the SWI/SNF chromatin remodeling complex, such as the SMARCA4 (BRG1) catalytic subunit, has been associated with improved response to ICB, however the mechanism by which this occurs is unclear. The aim of this current study was to examine the alterations in tumor cell-intrinsic and extrinsic immune signaling caused by SMARCA4 loss. Using OC models with loss-of-function mutations in SMARCA4 , we found that SMARCA4 loss resulted in increased cancer cell-intrinsic immunogenicity, characterized by upregulation of long-terminal RNA repeats such as endogenous retroviruses, increased expression of interferon-stimulated genes, and upregulation of antigen presentation machinery. Notably, this response was dependent on IRF3 signaling, but was independent of the type I interferon receptor. Mice inoculated with cancer cells bearing SMARCA4 loss demonstrated increased activation of cytotoxic T cells and NK cells in the tumor microenvironment as well as increased infiltration with activated dendritic cells. These results were recapitulated when animals bearing SMARCA4- proficient tumors were treated with a BRG1 inhibitor, suggesting that modulation of chromatin remodeling through targeting SMARCA4 may serve as a strategy to reverse immune evasion in OC.

6.
Cancer Res ; 83(16): 2640-2642, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549230

RESUMEN

Cancer cell senescence in lung squamous cell carcinoma (LUSC) is associated with a poor response to chemotherapies and immunotherapies due to promotion of an immunosuppressive tumor microenvironment. This environment is shaped by the senescence-associated secretory pathway, which recruits suppressive immune cell populations. In a recent study, Attig and colleagues identified a transcription factor-activated molecular switch that circumvents cellular senescence through increased expression of the calbindin protein. A human endogenous retrovirus (HERV) sequence upstream of the calbindin gene, CALB1, promotes the transcription of an HERVH-CALB1 transcript through a splice event at the third CALB1 exon in a process known as protein exaptation. The KLF5 transcription factor mediates this transcriptional activity by binding at the HERVH sequence, subsequently initiating the chimeric HERVH-CALB1 transcription. This increased expression of calbindin reduces CXCL8 chemokine production and downstream neutrophil recruitment in LUSC tumor cells. CALB1 exaptation by HERVH is one example by which endogenous retroelements (ERE) regulate immunity in human cancers, highlighting the emerging role of EREs in tumor immunity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Retrovirus Endógenos , Neoplasias Pulmonares , Humanos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Factores de Transcripción/metabolismo , Neoplasias Pulmonares/genética , Senescencia Celular/genética , Calbindinas/genética , Calbindinas/metabolismo , Microambiente Tumoral
7.
Cytotherapy ; 25(7): 718-727, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37278683

RESUMEN

BACKGROUND: Adoptive T cell therapy (ATCT) has been successful in treating hematological malignancies and is currently under investigation for solid-tumor therapy. In contrast to existing chimeric antigen receptor (CAR) T cell and/or antigen-specific T cell approaches, which require known targets, and responsive to the need for targeting a broad repertoire of antigens in solid tumors, we describe the first use of immunostimulatory photothermal nanoparticles to generate tumor-specific T cells. METHODS: Specifically, we subject whole tumor cells to Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) before culturing with dendritic cells (DCs), and subsequent stimulation of T cells. This strategy differs from previous approaches using tumor cell lysates because we use nanoparticles to mediate thermal and immunogenic cell death in tumor cells, rendering them enhanced antigen sources. RESULTS: In proof-of-concept studies using two glioblastoma (GBM) tumor cell lines, we first demonstrated that when PBNP-PTT was administered at a "thermal dose" targeted to induce the immunogenicity of U87 GBM cells, we effectively expanded U87-specific T cells. Further, we found that DCs cultured ex vivo with PBNP-PTT-treated U87 cells enabled 9- to 30-fold expansion of CD4+ and CD8+ T cells. Upon co-culture with target U87 cells, these T cells secreted interferon-É£ in a tumor-specific and dose-dependent manner (up to 647-fold over controls). Furthermore, T cells manufactured using PBNP-PTT ex vivo expansion elicited specific cytolytic activity against target U87 cells (donor-dependent 32-93% killing at an effector to target cell (E:T) ratio of 20:1) while sparing normal human astrocytes and peripheral blood mononuclear cells from the same donors. In contrast, T cells generated using U87 cell lysates expanded only 6- to 24-fold and killed 2- to 3-fold less U87 target cells at matched E:T ratios compared with T cell products expanded using the PBNP-PTT approach. These results were reproducible even when a different GBM cell line (SNB19) was used, wherein the PBNP-PTT-mediated approach resulted in a 7- to 39-fold expansion of T cells, which elicited 25-66% killing of the SNB19 cells at an E:T ratio of 20:1, depending on the donor. CONCLUSIONS: These findings provide proof-of-concept data supporting the use of PBNP-PTT to stimulate and expand tumor-specific T cells ex vivo for potential use as an adoptive T cell therapy approach for the treatment of patients with solid tumors.


Asunto(s)
Glioblastoma , Nanopartículas , Humanos , Leucocitos Mononucleares , Inmunoterapia Adoptiva/métodos , Linfocitos T CD8-positivos , Glioblastoma/terapia , Línea Celular Tumoral
8.
Cancer Res ; 83(15): 2584-2599, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249603

RESUMEN

Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. SIGNIFICANCE: Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Elementos Transponibles de ADN/genética , Activación Transcripcional , Análisis de Secuencia de ARN , Neoplasias/genética
9.
Nat Commun ; 14(1): 2122, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37055433

RESUMEN

Targeting DNA methyltransferase 1 (DNMT1) has immunomodulatory and anti-neoplastic activity, especially when paired with cancer immunotherapies. Here we explore the immunoregulatory functions of DNMT1 in the tumor vasculature of female mice. Dnmt1 deletion in endothelial cells (ECs) impairs tumor growth while priming expression of cytokine-driven cell adhesion molecules and chemokines important for CD8+ T-cell trafficking across the vasculature; consequently, the efficacy of immune checkpoint blockade (ICB) is enhanced. We find that the proangiogenic factor FGF2 promotes ERK-mediated DNMT1 phosphorylation and nuclear translocation to repress transcription of the chemokines Cxcl9/Cxcl10 in ECs. Targeting Dnmt1 in ECs reduces proliferation but augments Th1 chemokine production and extravasation of CD8+ T-cells, suggesting DNMT1 programs immunologically anergic tumor vasculature. Our study is in good accord with preclinical observations that pharmacologically disrupting DNMT1 enhances the activity of ICB but suggests an epigenetic pathway presumed to be targeted in cancer cells is also operative in the tumor vasculature.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Femenino , Ratones , Animales , Citocinas/metabolismo , Células Endoteliales/metabolismo , Internalización del Virus , Neoplasias/terapia , Neoplasias/metabolismo , Quimiocina CXCL10/metabolismo
10.
Adv Cancer Res ; 158: 41-71, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36990538

RESUMEN

Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Epigénesis Genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inmunoterapia , Epigenoma
11.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36343976

RESUMEN

BACKGROUND: Novel therapies are urgently needed for ovarian cancer (OC), the fifth deadliest cancer in women. Preclinical work has shown that DNA methyltransferase inhibitors (DNMTis) can reverse the immunosuppressive tumor microenvironment in OC. Inhibiting DNA methyltransferases activate transcription of double-stranded (ds)RNA, including transposable elements. These dsRNAs activate sensors in the cytoplasm and trigger type I interferon (IFN) signaling, recruiting host immune cells to kill the tumor cells. Adenosine deaminase 1 (ADAR1) is induced by IFN signaling and edits mammalian dsRNA with an A-to-I nucleotide change, which is read as an A-to-G change in sequencing data. These edited dsRNAs cannot be sensed by dsRNA sensors, and thus ADAR1 inhibits the type I IFN response in a negative feedback loop. We hypothesized that decreasing ADAR1 editing would enhance the DNMTi-induced immune response. METHODS: Human OC cell lines were treated in vitro with DNMTi and then RNA-sequenced to measure RNA editing. Adar1 was stably knocked down in ID8 Trp53-/- mouse OC cells. Control cells (shGFP) or shAdar1 cells were tested with mock or DNMTi treatment. Tumor-infiltrating immune cells were immunophenotyped using flow cytometry and cell culture supernatants were analyzed for secreted chemokines/cytokines. Mice were injected with syngeneic shAdar1 ID8 Trp53-/- cells and treated with tetrahydrouridine/DNMTi while given anti-interferon alpha and beta receptor 1, anti-CD8, or anti-NK1.1 antibodies every 3 days. RESULTS: We show that ADAR1 edits transposable elements in human OC cell lines after DNMTi treatment in vitro. Combining ADAR1 knockdown with DNMTi significantly increases pro-inflammatory cytokine/chemokine production and sensitivity to IFN-ß compared with either perturbation alone. Furthermore, DNMTi treatment and Adar1 loss reduces tumor burden and prolongs survival in an immunocompetent mouse model of OC. Combining Adar1 loss and DNMTi elicited the most robust antitumor response and transformed the immune microenvironment with increased recruitment and activation of CD8+ T cells. CONCLUSION: In summary, we showed that the survival benefit from DNMTi plus ADAR1 inhibition is dependent on type I IFN signaling. Thus, epigenetically inducing transposable element transcription combined with inhibition of RNA editing is a novel therapeutic strategy to reverse immune evasion in OC, a disease that does not respond to current immunotherapies.


Asunto(s)
Neoplasias Ováricas , Edición de ARN , Femenino , Humanos , Animales , Ratones , Microambiente Tumoral , Metilación de ADN , Elementos Transponibles de ADN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Bicatenario/uso terapéutico , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/terapia , Neoplasias Ováricas/tratamiento farmacológico , Citocinas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
12.
J Clin Invest ; 132(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838045

RESUMEN

Cancer cells resist the immune response in a process known as immune editing or immune evasion. Therapies that target the immune system have revolutionized cancer treatment; however, immunotherapies have been ineffective for the majority of ovarian cancer cases. In this issue of the JCI, Chen, Xie, et al. hypothesized that hypomethylating agent (HMA) treatment would induce antitumor immunity to sensitize patients with ovarian cancer to anti-PD-1 immunotherapy. The authors performed a phase II clinical trial to test the combination of guadecitabine, a second-generation HMA, along with pembrolizumab, an immune checkpoint inhibitor of PD-1. The trial included a group of 35 patients with platinum-resistant ovarian cancer. While the clinical benefit from the combined HMA plus immune checkpoint blockade regimen was lower than hoped, the correlate analyses gave important information about which patients with ovarian cancer may be more likely to respond to immune therapy.


Asunto(s)
Metilación de ADN , Neoplasias Ováricas , Femenino , Humanos , Inmunoterapia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/terapia
13.
J Virol ; 96(15): e0037222, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867565

RESUMEN

Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system. We have previously found that the small molecule 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) acts as an LRA by increasing signal transducer and activator of transcription (STAT) factor activation mediated by interleukin-15 (IL-15) in cells isolated from aviremic participants. The IL-15 superagonist N-803 is currently under clinical investigation to eliminate latent reservoirs. IL-15 and N-803 share similar mechanisms of action by promoting the activation of STATs and have shown some promise in preclinical models directed toward HIV eradication. In this work, we evaluated the ability of HODHBt to enhance IL-15 signaling in natural killer (NK) cells and the biological consequences associated with increased STAT activation in NK cell effector and memory-like functions. We showed that HODHBt increased IL-15-mediated STAT phosphorylation in NK cells, resulting in increases in the secretion of CXCL-10 and interferon gamma (IFN-γ) and the expression of cytotoxic proteins, including granzyme B, granzyme A, perforin, granulysin, FASL, and TRAIL. This increased cytotoxic profile results in increased cytotoxicity against HIV-infected cells and different tumor cell lines. HODHBt also improved the generation of cytokine-induced memory-like NK cells. Overall, our data demonstrate that enhancing the magnitude of IL-15 signaling with HODHBt favors NK cell cytotoxicity and memory-like generation, and thus, targeting this pathway could be further explored for HIV cure interventions. IMPORTANCE Several clinical trials targeting the HIV latent reservoir with LRAs have been completed. In spite of a lack of clinical benefit, they have been crucial to elucidate hurdles that "shock and kill" strategies have to overcome to promote an effective reduction of the latent reservoir to lead to a cure. These hurdles include low reactivation potential mediated by LRAs, the negative influence of some LRAs on the activity of natural killer and effector CD8 T cells, an increased resistance to apoptosis of latently infected cells, and an exhausted immune system due to chronic inflammation. To that end, finding therapeutic strategies that can overcome some of these challenges could improve the outcome of shock and kill strategies aimed at HIV eradication. Here, we show that the LRA HODHBt also improves IL-15-mediated NK cell effector and memory-like functions. As such, pharmacological enhancement of IL-15-mediated STAT activation can open new therapeutic avenues toward an HIV cure.


Asunto(s)
VIH-1 , Memoria Inmunológica , Interleucina-15 , Células Asesinas Naturales , Factores de Transcripción STAT , Triazinas , Latencia del Virus , Humanos , Línea Celular Tumoral , Quimiocina CXCL10 , Pruebas Inmunológicas de Citotoxicidad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Memoria Inmunológica/efectos de los fármacos , Interferón gamma , Interleucina-15/inmunología , Interleucina-15/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Factores de Transcripción STAT/metabolismo , Activación Transcripcional/efectos de los fármacos , Triazinas/farmacología , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos
14.
FEBS J ; 289(5): 1160-1179, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471418

RESUMEN

Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies.


Asunto(s)
Metilación de ADN , Elementos Transponibles de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes y Vías Metabólicas/genética , Neoplasias/genética , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Diferenciación Celular , Silenciador del Gen , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Elementos de Nucleótido Esparcido Largo , Redes y Vías Metabólicas/efectos de los fármacos , Mutagénesis Insercional , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Cancer Res ; 81(20): 5176-5189, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34433584

RESUMEN

Epithelial ovarian carcinomas are particularly deadly due to intratumoral heterogeneity, resistance to standard-of-care therapies, and poor response to alternative treatments such as immunotherapy. Targeting the ovarian carcinoma epigenome with DNA methyltransferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi) increases immune signaling and recruits CD8+ T cells and natural killer cells to fight ovarian carcinoma in murine models. This increased immune activity is caused by increased transcription of repetitive elements (RE) that form double-stranded RNA (dsRNA) and trigger an IFN response. To understand which REs are affected by epigenetic therapies in ovarian carcinoma, we assessed the effect of DNMTi and HDACi on ovarian carcinoma cell lines and patient samples. Subfamily-level (TEtranscripts) and individual locus-level (Telescope) analysis of REs showed that DNMTi treatment upregulated more REs than HDACi treatment. Upregulated REs were predominantly LTR and SINE subfamilies, and SINEs exhibited the greatest loss of DNA methylation upon DNMTi treatment. Cell lines with TP53 mutations exhibited significantly fewer upregulated REs with epigenetic therapy than wild-type TP53 cell lines. This observation was validated using isogenic cell lines; the TP53-mutant cell line had significantly higher baseline expression of REs but upregulated fewer upon epigenetic treatment. In addition, p53 activation increased expression of REs in wild-type but not mutant cell lines. These data give a comprehensive, genome-wide picture of RE chromatin and transcription-related changes in ovarian carcinoma after epigenetic treatment and implicate p53 in RE transcriptional regulation. SIGNIFICANCE: This study identifies the repetitive element targets of epigenetic therapies in ovarian carcinoma and indicates a role for p53 in this process.


Asunto(s)
Azacitidina/farmacología , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Ováricas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Proteína p53 Supresora de Tumor/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
18.
Cancer Res ; 81(13): 3449-3460, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33941616

RESUMEN

Human endogenous retroviruses (HERV) have been implicated in a variety of diseases including cancers. Recent research implicates HERVs in epigenetic gene regulation. Here we utilize a recently developed bioinformatics tool for identifying HERV expression at the locus-specific level to identify differential expression of HERVs in matched tumor-normal RNA-sequencing (RNA-seq) data from The Cancer Genome Atlas. Data from 52 prostate cancer, 111 breast cancer, and 24 colon cancer cases were analyzed. Locus-specific analysis identified active HERV elements and differentially expressed HERVs in prostate cancer, breast cancer, and colon cancer. In addition, differentially expressed host genes were identified across prostate, breast, and colon cancer datasets, respectively, including several involved in demethylation and antiviral response pathways, supporting previous findings regarding the pathogenic mechanisms of HERVs. A majority of differentially expressed HERVs intersected protein coding genes or lncRNAs in each dataset, and a subset of differentially expressed HERVs intersected differentially expressed genes in prostate, breast, and colon cancers, providing evidence towards regulatory function. Finally, patterns in HERV expression were identified in multiple cancer types, with 155 HERVs differentially expressed in all three cancer types. This analysis extends previous results identifying HERV transcription in cancer RNA-seq datasets to a locus-specific level, and in doing so provides a foundation for future studies investigating the functional role of HERV in cancers and identifies a number of novel targets for cancer biomarkers and immunotherapy. SIGNIFICANCE: Expressed human endogenous retroviruses are mapped at locus-specific resolution and linked to specific pathways to identify potential biomarkers and therapeutic targets in prostate, breast, and colon cancers.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias del Colon/genética , Retrovirus Endógenos/genética , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Neoplasias de la Próstata/genética , Proteínas Virales/genética , Neoplasias de la Mama/virología , Estudios de Casos y Controles , Neoplasias del Colon/virología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/virología , Análisis de Secuencia de ARN
20.
Cancer Res ; 80(17): 3649-3662, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32605998

RESUMEN

Despite the outstanding clinical results of immune checkpoint blockade (ICB) in melanoma and other cancers, clinical trials in breast cancer have reported low responses to these therapies. Current efforts are now focused on improving the treatment efficacy of ICB in breast cancer using new combination designs such as molecularly targeted agents, including histone deacetylase inhibitors (HDACi). These epigenetic drugs have been widely described as potent cytotoxic agents for cancer cells. In this work, we report new noncanonical regulatory properties of ultra-selective HDAC6i over the expression and function of epithelial-mesenchymal transition pathways and the invasiveness potential of breast cancer. These unexplored roles position HDAC6i as attractive options to potentiate ongoing immunotherapeutic approaches. These new functional activities of HDAC6i involved regulation of the E-cadherin/STAT3 axis. Pretreatment of tumors with HDAC6i induced critical changes in the tumor microenvironment, resulting in improved effectiveness of ICB and preventing dissemination of cancer cells to secondary niches. Our results demonstrate for the first time that HDAC6i can both improve ICB antitumor immune responses and diminish the invasiveness of breast cancer with minimal cytotoxic effects, thus departing from the cytotoxicity-centric paradigm previously assigned to HDACi. SIGNIFICANCE: Ultraselective HDAC6 inhibitors can reduce tumor growth and invasiveness of breast cancer by noncanonical mechanisms unrelated to the previously cytotoxic properties attributed to HDAC inhibitors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Histona Desacetilasa 6/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Mamarias Experimentales/patología , Neoplasias de la Mama Triple Negativas/patología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Femenino , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Invasividad Neoplásica/patología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...