Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Headache Pain ; 23(1): 80, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35820799

RESUMEN

INTRODUCTION: Several functional neuroimaging studies on healthy controls and patients with migraine with aura have shown that the activation of functional networks during visual stimulation is not restricted to the striate system, but also includes several extrastriate networks. METHODS: Before and after 4 min of visual stimulation with a checkerboard pattern, we collected functional MRI in 21 migraine with aura (MwA) patients and 18 healthy subjects (HS). For each recording session, we identified independent resting-state networks in each group and correlated network connection strength changes with clinical disease features. RESULTS: Before visual stimulation, we found reduced connectivity between the default mode network and the left dorsal attention system (DAS) in MwA patients compared to HS. In HS, visual stimulation increases functional connectivity between the independent components of the bilateral DAS and the executive control network (ECN). In MwA, visual stimulation significantly improved functional connectivity between the independent component pairs salience network and DAS, and between DAS and ECN. The ECN Z-scores after visual stimulation were negatively related to the monthly frequency of aura. CONCLUSIONS: In individuals with MwA, 4 min of visual stimulation had stronger cognitive impact than in healthy people. A higher frequency of aura may lead to a diminished ability to obtain cognitive resources to cope with transitory but important events like aura-related focal neurological symptoms.


Asunto(s)
Epilepsia , Migraña con Aura , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Estimulación Luminosa
2.
Behav Neurol ; 2022: 3972173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251368

RESUMEN

Brain iron load is one of the most important neuropathological hallmarks in movement disorders. Specifically, the iron provides most of the paramagnetic metal signals in the brain and its accumulation seems to play a key role, although not completely explained, in the degeneration of the basal ganglia, as well as other brain structures. Moreover, iron distribution patterns have been implicated in depicting different movement disorders. This work reviewed current literature on Magnetic Resonance Imaging for Brain Iron Detection and Quantification (MRI-BIDQ) in neurodegenerative processes underlying movement disorders.


Asunto(s)
Hierro , Trastornos del Movimiento , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/patología , Neuroimagen
3.
Phys Med ; 85: 98-106, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33991807

RESUMEN

PURPOSE: The purpose of this multicenter phantom study was to exploit an innovative approach, based on an extensive acquisition protocol and unsupervised clustering analysis, in order to assess any potential bias in apparent diffusion coefficient (ADC) estimation due to different scanner characteristics. Moreover, we aimed at assessing, for the first time, any effect of acquisition plan/phase encoding direction on ADC estimation. METHODS: Water phantom acquisitions were carried out on 39 scanners. DWI acquisitions (b-value = 0-200-400-600-800-1000 s/mm2) with different acquisition plans (axial, coronal, sagittal) and phase encoding directions (anterior/posterior and right/left, for the axial acquisition plan), for 3 orthogonal diffusion weighting gradient directions, were performed. For each acquisition setup, ADC values were measured in-center and off-center (6 different positions), resulting in an entire dataset of 84 × 39 = 3276 ADC values. Spatial uniformity of ADC maps was assessed by means of the percentage difference between off-center and in-center ADC values (Δ). RESULTS: No significant dependence of in-center ADC values on acquisition plan/phase encoding direction was found. Ward unsupervised clustering analysis showed 3 distinct clusters of scanners and an association between Δ-values and manufacturer/model, whereas no association between Δ-values and maximum gradient strength, slew rate or static magnetic field strength was revealed. Several acquisition setups showed significant differences among groups, indicating the introduction of different biases in ADC estimation. CONCLUSIONS: Unsupervised clustering analysis of DWI data, obtained from several scanners using an extensive acquisition protocol, allows to reveal an association between measured ADC values and manufacturer/model of scanner, as well as to identify suboptimal DWI acquisition setups for accurate ADC estimation.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Análisis por Conglomerados , Difusión , Fantasmas de Imagen , Reproducibilidad de los Resultados
4.
Neuroradiology ; 63(2): 235-242, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32918150

RESUMEN

PURPOSE: Impaired olfactory function is one of the main features of Parkinson's disease. However, how peripheral olfactory structures are involved remains unclear. Using diffusion tensor imaging fiber tracking, we investigated for MRI microstructural changes in the parkinsonian peripheral olfactory system and particularly the olfactory tract, in order to seek a better understanding of the structural alternations underlying hyposmia in Parkinson's disease. METHODS: All patients were assessed utilizing by the Italian Olfactory Identification Test for olfactory function and the Unified Parkinson's Disease Rating Scale-III part as well as Hoehn and Yahr rating scale for motor disability. Imaging was performed on a 3 T Clinical MR scanner. MRI data pre-processing was carried out by DTIPrep, diffusion tensor imaging reconstruction, and fiber tracking using Diffusion Toolkit and tractography analysis by TrackVis. The following parameters were used for groupwise comparison: fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, and tract volume. RESULTS: Overall 23 patients with Parkinson's disease (mean age 63.6 ± 9.3 years, UPDRS-III 24.5 ± 12.3, H&Y 1.9 ± 0.5) and 18 controls (mean age 56.3 ± 13.7 years) were recruited. All patients had been diagnosed hyposmic. Diffusion tensor imaging analysis of the olfactory tract showed significant fractional anisotropy, and tract volume decreases for the Parkinson's disease group compared with controls (P < 0.05). Fractional anisotropy and age, in the control group, were significant for multiple correlations (r = - 0.36, P < 0.05, Spearman's rank correlation). CONCLUSIONS: Fiber tracking diffusion tensor imaging analysis of olfactory tract was feasible, and it could be helpful for characterizing hyposmia in Parkinson's disease.


Asunto(s)
Personas con Discapacidad , Trastornos Motores , Bulbo Olfatorio , Enfermedad de Parkinson , Anciano , Anisotropía , Imagen de Difusión Tensora , Humanos , Persona de Mediana Edad , Bulbo Olfatorio/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen
5.
Brain Struct Funct ; 226(1): 137-150, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33231744

RESUMEN

Accurate and reproducible automated segmentation of human hippocampal subfields is of interest to study their roles in cognitive functions and disease processes. Multispectral structural MRI methods have been proposed to improve automated hippocampal subfield segmentation accuracy, but the reproducibility in a multicentric setting is, to date, not well characterized. Here, we assessed test-retest reproducibility of FreeSurfer 6.0 hippocampal subfield segmentations using multispectral MRI analysis pipelines (22 healthy subjects scanned twice, a week apart, at four 3T MRI sites). The harmonized MRI protocol included two 3D-T1, a 3D-FLAIR, and a high-resolution 2D-T2. After within-session T1 averaging, subfield volumes were segmented using three pipelines with different multispectral data: two longitudinal ("long_T1s" and "long_T1s_FLAIR") and one cross-sectional ("long_T1s_FLAIR_crossT2"). Volume reproducibility was quantified in magnitude (reproducibility error-RE) and space (DICE coefficient). RE was lower in all hippocampal subfields, except for hippocampal fissure, using the longitudinal pipelines compared to long_T1s_FLAIR_crossT2 (average RE reduction of 0.4-3.6%). Similarly, the longitudinal pipelines showed a higher spatial reproducibility (1.1-7.8% of DICE improvement) in all hippocampal structures compared to long_T1s_FLAIR_crossT2. Moreover, long_T1s_FLAIR provided a small but significant RE improvement in comparison to long_T1s (p = 0.015), whereas no significant DICE differences were found. In addition, structures with volumes larger than 200 mm3 had better RE (1-2%) and DICE (0.7-0.95) than smaller structures. In summary, our study suggests that the most reproducible hippocampal subfield FreeSurfer segmentations are derived from a longitudinal pipeline using 3D-T1s and 3D-FLAIR. Adapting a longitudinal pipeline to include high-resolution 2D-T2 may lead to further improvements.


Asunto(s)
Envejecimiento , Hipocampo/diagnóstico por imagen , Adulto , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
6.
Phys Med ; 78: 150-155, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33035926

RESUMEN

PURPOSE: [18F]Fluoromethylcholine ([18F]FMCH) is a radiopharmaceutical used in positron emission tomography (PET) imaging for the study of prostate, breast, and brain tumors. It is usually synthesized in cyclotron facilities where 18F is produced by proton irradiation of [18O]H2O through 18O(p,n)18F reaction. Due to the activation of target materials, the bombardment causes unwanted radionuclidic impurities in [18O]H2O, that need to be removed during the radiopharmaceutical synthesis. Thus, the aim of this study is to quantify the radionuclide impurities in the 18F production process and in the synthesized [18F]FMCH, demonstrating the radionuclidic purity of this radiopharmaceutical. METHODS: Long-lived radionuclide impurities were experimentally assessed using high-resolution gamma and liquid scintillation spectrometries, while short-lived impurities were monitored analyzing the decay curve of the irradiated [18O]H2O with an activity calibrator. As spectrometric radionuclide library, a Geant4 Monte Carlo simulation of the 18F-target assembly was previously performed. RESULTS: 3H, 52,54Mn, 56,57,58Co, 95m,96Tc, 109Cd, and 184Re were found in the irradiated [18O]H2O, but no radionuclide was found in the non-irradiated [18O]H2O neither in the final [18F]FMCH solution with an activity concentration greater than the minimum detectable activity concentration. A total impurity activity <6.2 kBq was measured in the irradiated [18O]H2O, whereas a [18F]FMCH radionuclide purity >99.9999998% was estimated. Finally, the decay curve of the irradiated [18O]H2O revealed a very low maximum of 13N activity (<0.03% of 18F) even immediately after the end of bombardment. CONCLUSIONS: This study demonstrated the radionuclidic purity of [18F]FMCH according to the EU Pharmacopeia.


Asunto(s)
Radioisótopos , Radiofármacos , Colina/análogos & derivados , Ciclotrones , Tomografía de Emisión de Positrones
7.
Phys Med ; 64: 29-32, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31515031

RESUMEN

PURPOSE: Individual dosimetry allows to quantify doses from ionizing radiation of exposed workers. Scientific and epidemiological evidences highlight the need for adequate measures for a greater protection of the eye and a reduction in annual doses. ICRP Publication 103, illustrating the operational dose quantity Hp(d) for the individual monitoring, proposes a depth d = 3 mm for eye lens monitoring, indicating that even the Hp(0.07) can be used. In this study, it was investigated if there are differences in the evaluation of the equivalent dose to eye lens (Hlens) using Hp(3) or Hp(0.07). MATERIALS AND METHODS: A slab phantom calibration was performed by an Accredited Calibration Laboratory in terms of Hp(3) and Hp(0.07) using ext-rad TLD-100 (LiF:Mg,Ti) dosimeters. Hp(0.07) and Hp(3) were measured for 26 exposed workers to assess Hlens. The measuring took place monthly in 2017 to obtain both semestral and annual doses. RESULTS: Hlens(0.07) was always smaller than Hlens(3). However, the differences were not statistically significant (Mann-Whitney test, p > 0.05) for both semestral and annual doses. The percentage differences were 7 ±â€¯3%, 6 ±â€¯3% and 7 ±â€¯2% for I semester, II semester and whole year, respectively. The mean underestimation index <10%, intra-class correlation coefficient >0.99, coefficient of variation <3% and the excellent correlation (R2 ≈ 0.999) for both semestral and annual doses highlighted that Hp(0.07) can be used to evaluate Hlens instead of Hp(3). CONCLUSIONS: No statistical evidence was found that the use of Hp(0.07) underestimates the equivalent dose to eye lens obtained through Hp(3).


Asunto(s)
Cristalino/efectos de la radiación , Dosis de Radiación
8.
Neurobiol Aging ; 80: 91-98, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31103636

RESUMEN

Brain iron load is one of the main neuropathologic hallmarks of Parkinson's disease (PD). Previous studies indicated that iron in the substantia nigra (SN) is related to disease duration and motor impairment. We explore, through a cross-sectional study, the association between brain iron distribution, evaluated by T2*-weighted magnetic resonance imaging (T2*), and clinical features in a cohort of patients with PD. Thirty-two patients with PD, compared with 10 control subjects, were evaluated for motor and cognitive features (attention and working memory, executive functions, language, memory, and visuospatial function). They underwent a magnetic resonance imaging protocol including T2* analysis of specific brain regions of interest to measure iron load compared with healthy control subjects. We found that iron content of the SN correlated positively with both disease duration and Unified Parkinson's Disease Rating Scale III off score. Montreal Cognitive Assessment, Spatial Span, and Graded Naming Test scores were inversely associated with iron load of the SN, whereas Wechsler Adult Intelligence Scale-IV Similarities score showed an inverse relationship with iron content in all the regions of interest examined. Our findings suggest a relationship between topographic brain iron distribution and cognitive domain impairment.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición , Disfunción Cognitiva/etiología , Imagen de Difusión por Resonancia Magnética , Actividad Motora , Trastornos Motores/etiología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/psicología , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Femenino , Humanos , Hierro/metabolismo , Masculino , Persona de Mediana Edad , Trastornos Motores/patología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología
9.
Phys Med ; 55: 135-141, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30342982

RESUMEN

PURPOSE: To propose an MRI quality assurance procedure that can be used for routine controls and multi-centre comparison of different MR-scanners for quantitative diffusion-weighted imaging (DWI). MATERIALS AND METHODS: 44 MR-scanners with different field strengths (1 T, 1.5 T and 3 T) were included in the study. DWI acquisitions (b-value range 0-1000 s/mm2), with three different orthogonal diffusion gradient directions, were performed for each MR-scanner. All DWI acquisitions were performed by using a standard spherical plastic doped water phantom. Phantom solution ADC value and its dependence with temperature was measured using a DOSY sequence on a 600 MHz NMR spectrometer. Apparent diffusion coefficient (ADC) along each diffusion gradient direction and mean ADC were estimated, both at magnet isocentre and in six different position 50 mm away from isocentre, along positive and negative AP, RL and HF directions. RESULTS: A good agreement was found between the nominal and measured mean ADC at isocentre: more than 90% of mean ADC measurements were within 5% from the nominal value, and the highest deviation was 11.3%. Away from isocentre, the effect of the diffusion gradient direction on ADC estimation was larger than 5% in 47% of included scanners and a spatial non uniformity larger than 5% was reported in 13% of centres. CONCLUSION: ADC accuracy and spatial uniformity can vary appreciably depending on MR scanner model, sequence implementation (i.e. gradient diffusion direction) and hardware characteristics. The DWI quality assurance protocol proposed in this study can be employed in order to assess the accuracy and spatial uniformity of estimated ADC values, in single- as well as multi-centre studies.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/instrumentación , Difusión , Fantasmas de Imagen , Control de Calidad
10.
Curr Radiopharm ; 11(2): 92-99, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651945

RESUMEN

BACKGROUND: In medical cyclotron facilities, 11C is produced according to the 14N(p,α)11C reaction and widely employed in studies of prostate and brain cancers by Positron Emission Tomography. It is known from literature that the 11C-target assembly shows a reduction in efficiency during time, meaning a decrease of activity produced at the end of bombardment. This effect might depend on aspects which are still not completely known. OBJECTIVE: Possible causes of the loss of performance of the 11C-target assembly were addressed by Monte Carlo simulations. METHODS: Geant4 was used to model the 11C-target assembly of a GE PETtrace cyclotron. The physical and transport parameters to be used in the energy range of medical applications were extracted from literature data and 11C routine productions. The Monte Carlo assessment of 11C saturation yield was performed varying several parameters such as the proton energy and the angle of the target assembly with respect to the proton beam. RESULTS: The estimated 11C saturation yield is in agreement with IAEA data at the energy of interest, while it is about 35% greater than the experimental value. A more comprehensive modeling of the target system, including thermodynamic effect, is required. The energy absorbed in the inner layer of the target chamber was up to 46.5 J/mm2 under typical irradiation conditions. CONCLUSION: This study shows that Geant4 is potentially a useful tool to design and optimize targetry for PET radionuclide productions. Tests to choose the Geant4 physics libraries should be performed before using this tool with different energies and materials.


Asunto(s)
Radioisótopos de Carbono , Ciclotrones , Modelos Teóricos , Método de Montecarlo , Tomografía de Emisión de Positrones , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...