Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 37(11): 1571-1580, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33245098

RESUMEN

MOTIVATION: Biomedical research entails analyzing high dimensional records of biomedical features with hundreds or thousands of samples each. This often involves using also complementary clinical metadata, as well as a broad user domain knowledge. Common data analytics software makes use of machine learning algorithms or data visualization tools. However, they are frequently one-way analyses, providing little room for the user to reconfigure the steps in light of the observed results. In other cases, reconfigurations involve large latencies, requiring a retraining of algorithms or a large pipeline of actions. The complex and multiway nature of the problem, nonetheless, suggests that user interaction feedback is a key element to boost the cognitive process of analysis, and must be both broad and fluid. RESULTS: In this article, we present a technique for biomedical data analytics, based on blending meaningful views in an efficient manner, allowing to provide a natural smooth way to transition among different but complementary representations of data and knowledge. Our hypothesis is that the confluence of diverse complementary information from different domains on a highly interactive interface allows the user to discover relevant relationships or generate new hypotheses to be investigated by other means. We illustrate the potential of this approach with three case studies involving gene expression data and clinical metadata, as representative examples of high dimensional, multidomain, biomedical data. AVAILABILITY AND IMPLEMENTATION: Code and demo app to reproduce the results available at https://gitlab.com/idiazblanco/morphing-projections-demo-and-dataset-preparation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Interpretación Estadística de Datos , Aprendizaje Automático , Metadatos
2.
Int J Cancer ; 146(2): 373-387, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31211412

RESUMEN

Loss of 5-hydroxymethylcytosine (5hmC) has been associated with mutations of the ten-eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild-type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome-wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome-wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome-wide alteration of 5hmC.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Dioxigenasas/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Biopsia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Glioblastoma/mortalidad , Glioblastoma/patología , Código de Histonas/genética , Humanos , Ratones , Pronóstico , ARN Mensajero/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Chem Sci ; 11(4): 1052-1065, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34084361

RESUMEN

The first fluorescent probes that are actively channeled into the mitochondrial matrix by a specific mitochondrial membrane transporter in living cells have been developed. The new functional probes (BCT) have a minimalist structural design based on the highly efficient and photostable BODIPY chromophore and carnitine as a biotargeting element. Both units are orthogonally bonded through the common boron atom, thus avoiding the use of complex polyatomic connectors. In contrast to known mitochondria-specific dyes, BCTs selectively label these organelles regardless of their transmembrane potential and in an enantioselective way. The obtained experimental evidence supports carnitine-acylcarnitine translocase (CACT) as the key transporter protein for BCTs, which behave therefore as acylcarnitine biomimetics. This simple structural design can be readily extended to other structurally diverse starting F-BODIPYs to obtain BCTs with varied emission wavelengths along the visible and NIR spectral regions and with multifunctional capabilities. BCTs are the first fluorescent derivatives of carnitine to be used in cell microscopy and stand as promising research tools to explore the role of the carnitine shuttle system in cancer and metabolic diseases. Extension of this approach to other small-molecule mitochondrial transporters is envisaged.

4.
Chemistry ; 19(21): 6630-40, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23536481

RESUMEN

A general procedure for the assembly of hetero-bifunctional cubic silsesquioxanes with diverse functionality and a perfectly controlled distribution of functional groups on the inorganic framework has been developed. The method is based on a two-step sequence of mono- and hepta-functionalization through the ligand-accelerated copper(I)-catalyzed azide-alkyne cycloaddition of a readily available octaazido cubic silsesquioxane. The stoichiometry of the reactants and the law of binomial distribution essentially determine the selectivity of the key monofunctionalization reaction when a copper catalyst with strong donor ligands is used. The methodology has been applied to the preparation of a set of bifunctional nano-building-blocks with orthogonal reactivity for the controlled assembly of precisely defined hybrid nanomaterials and a fluorescent multivalent probe for application in targeted cell-imaging. The inorganic cage provides an improved photostability to the covalently attached dye as well as a convenient framework for the 3D multivalent display of the pendant epitopes. Thus, fluorescent bioprobes based on well-defined cubic silsesquioxanes offer interesting advantages over more conventional fully organic analogues and ill-defined hybrid nanoparticles and promise to become powerful tools for the study of cell biology and for biomedical applications.


Asunto(s)
Química Clic , Colorantes Fluorescentes/síntesis química , Compuestos de Organosilicio/síntesis química , Alquinos/química , Azidas/química , Catálisis , Cobre/química , Colorantes Fluorescentes/química , Ligandos , Microscopía Confocal , Estructura Molecular , Nanopartículas/química , Compuestos de Organosilicio/química
5.
J Appl Physiol (1985) ; 96(3): 1187-95; discussion 1170-2, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14766769

RESUMEN

O(2) sensing is of critical importance for cell survival and adaptation of living organisms to changing environments or physiological conditions. O(2)-sensitive ion channels are major effectors of the cellular responses to hypoxia. These channels are preferentially found in excitable neurosecretory cells (glomus cells of the carotid body, cells in the neuroepithelial bodies of the lung, and neonatal adrenal chromaffin cells), which mediate fast cardiorespiratory adjustments to hypoxia. O(2)-sensitive channels are also expressed in the pulmonary and systemic arterial smooth muscle cells where they participate in the vasomotor responses to low O(2) tension (particularly in hypoxic pulmonary vasoconstriction). The mechanisms underlying O(2) sensing and how the O(2) sensors interact with the ion channels remain unknown. Recent advances in the field give different support to the various current hypotheses. Besides the participation of ion channels in acute O(2) sensing, they also contribute to the gene program developed under chronic hypoxia. Gene expression of T-type calcium channels is upregulated by hypoxia through the same hypoxia-inducible factor-dependent signaling pathway utilized by the classical O(2)-regulated genes. Alteration of acute or chronic O(2) sensing by ion channels could participate in the pathophysiology of human diseases, such as sudden infant death syndrome or primary pulmonary hypertension.


Asunto(s)
Canales Iónicos/metabolismo , Oxígeno/metabolismo , Animales , Secuencia de Bases , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Canales Iónicos/genética , Datos de Secuencia Molecular , Transducción de Señal/fisiología
6.
J Biol Chem ; 278(25): 22316-24, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12679337

RESUMEN

Cellular responses to hypoxia can be acute or chronic. Acute responses mainly depend on oxygen-sensitive ion channels, whereas chronic responses rely on the hypoxia-inducible transcription factors (HIFs), which up-regulate the expression of enzymes, transporters, and growth factors. It is unknown whether the expression of genes coding for ion channels is also influenced by hypoxia. We report here that the alpha1H gene of T-type voltage-gated calcium channels is highly induced by lowering oxygen tension in PC12 cells. Accumulation of alpha1H mRNA in response to hypoxia is time- and dose-dependent and paralleled by an increase in the density of T-type calcium channel current recorded in patch clamped cells. HIF appears to be involved in the response to hypoxia, since cobalt chloride, desferrioxamine, and dimethyloxalylglycine, compounds that mimic HIF-regulated gene expression, replicate the hypoxic effect. Moreover, functional inhibition of HIF-2alpha protein accumulation using antisense HIF-2alpha oligonucleotides reverses the effect of hypoxia on T-type Ca2+ channel expression. Importantly, regulation by oxygen tension is specific for T-type calcium channels, since it is not observed with the L-, N-, and P/Q-channel types. These findings show for the first time that hypoxia induces an ion channel gene via a HIF-dependent mechanism and define a new role for the T-type calcium channels as regulators of cellular excitability and calcium influx under chronic hypoxia.


Asunto(s)
Canales de Calcio Tipo T/genética , Hipoxia de la Célula/fisiología , Animales , Secuencia de Bases , Encéfalo/fisiología , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/fisiología , Cartilla de ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos Antisentido/farmacología , Células PC12 , Feocromocitoma , Ratas , Proteínas Recombinantes/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tionucleótidos/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...