Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 316: 121029, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321726

RESUMEN

Hydroxypropyl methylcellulose (HPMC) belongs to the cellulose ether family that has hydroxyl groups substituted by hydrophobic methyl groups (DS) and hydrophilic hydroxypropyl groups (MS). Herein, the interactions between water molecules and cryogels prepared with HPMC in the presence and absence of a linear nonionic surfactant, as well as CaO2 microparticles, which react with water producing O2, were systematically investigated by sorption experiments and Time-Domain Nuclear Magnetic Resonance. Regardless of the DS and MS, most water molecules presented transverse relaxation time t2 typical of intermediate water and a small population of more tightly bound water. HPMC cryogels with the highest DS of 1.9 presented the slowest swelling rate of 0.519 ± 0.053 gwater/(g.s) and the highest contact angle values 85.250o ± 0.004o, providing the best conditions for a slow reaction between CaO2 and water. The presence of surfactant favored hydrophobic interactions that allowed the polar head of the surfactant to be exposed to the medium, resulting in a higher swelling rate and lower contact angle values. The HPMC with the highest MS presented the fastest swelling rate and the lowest contact angle. These findings are relevant for the formulations and reactions, where tuning the swelling kinetics is crucial for the final application.


Asunto(s)
Criogeles , Agua , Agua/química , Derivados de la Hipromelosa/química , Humectabilidad , Estructura Molecular , Metilcelulosa/química , Tensoactivos
2.
Carbohydr Polym ; 279: 119014, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980357

RESUMEN

Over the last 20 years, polysaccharide-based materials have garnered attention in the enhanced efficiency fertilizers (EEFs) research. Biodegradability, non-toxicity, water-solubility, swellability, and ease of chemical modification make these polymers suitable for agricultural applications. In this review, the polysaccharides-based EEFs advances are summarized over the polymer and co-materials selection, the methods, and the chemical/structure aspects necessary for an appropriate production. We also briefly discuss terminologies, nutrient release mechanisms, biodegradation, and future trends. The most used polysaccharides are chitosan, starch, and alginate, and the non-Fickian model most describes the release mechanism. It is dependent on the relaxation of polymer chains by the matrix swelling followed by the nutrient diffusion. EEFs-polymers-based should be designed as more packed and less porous structures to avoid the immediate contact of the fertilizer with the surrounding water, improving fertilizer retention. Furthermore, the preparation methods will determine the scale-up of the material.


Asunto(s)
Fertilizantes , Polímeros/química , Polisacáridos/química , Biodegradación Ambiental , Polímeros/metabolismo , Polisacáridos/metabolismo , Suelo/química , Agua/química
3.
Carbohydr Polym ; 271: 118419, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364560

RESUMEN

Developing different paths to achieve sustainable agriculture is no longer an option; it is a necessity. EEF materials are alternatives to improve the efficacy of the agrochemicals in the soil and plant, reducing wasting and environmental contamination. The present work aims to develop EEF materials based on starch and micronutrients, considering few works address EEFs materials with micronutrients. Monoelementary dispersions of gelatinized starch with micronutrients (Fe, Cu, Mn) were spray-dried and thermally, structurally, and morphologically characterized. We evaluated water-medium nutrient release, release kinetics, and the swelling degree. Different micronutrients affect morphology, size distribution, swelling degree, release, kinetics, and interaction between polymer-nutrient. Bigger particle sizes achieved a higher swelling degree, which led to decreased micronutrient release in the water. The Peppas-Sahlin model mainly ruled the release kinetics (fitted to all the materials). This result confirmed our hypothesis that a swelling starch delays the release.


Asunto(s)
Fertilizantes , Micronutrientes/química , Almidón/química , Agricultura/métodos , Liberación de Fármacos , Cinética , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...