Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 13(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37367032

RESUMEN

Highly active antiretroviral therapy (HAART) includes very potent drugs that are often characterized by high toxicity. Tenofovir (TFV) is a widely used drug prescribed mainly for pre-exposure prophylaxis (PreP) and the treatment of human immunodeficiency virus (HIV). The therapeutic range of TFV is narrow, and adverse effects occur with both underdose and overdose. The main factor contributing to therapeutic failure is the improper management of TFV, which may be caused by low compliance or patient variability. An important tool to prevent inappropriate administration is therapeutic drug monitoring (TDM) of compliance-relevant concentrations (ARCs) of TFV. TDM is performed routinely using time-consuming and expensive chromatographic methods coupled with mass spectrometry. Immunoassays, such as enzyme-linked immunosorbent assays (ELISAs) and lateral flow immunoassays (LFIAs), are based on antibody-antigen specific recognition and represent key tools for real-time quantitative and qualitative screening for point-of-care testing (POCT). Since saliva is a non-invasive and non-infectious biological sample, it is well-suited for TDM. However, saliva is expected to have a very low ARC for TFV, so tests with high sensitivity are required. Here, we have developed and validated a highly sensitive ELISA (IC50 1.2 ng/mL, dynamic range 0.4-10 ng/mL) that allows the quantification of TFV in saliva at ARCs and an extremely sensitive LFIA (visual LOD 0.5 ng/mL) that is able to distinguish between optimal and suboptimal ARCs of TFV in untreated saliva.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Tenofovir/uso terapéutico , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Saliva , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo
2.
Talanta ; 258: 124443, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933298

RESUMEN

African swine fever (ASF) is a severe haemorrhagic infectious disease affecting suids, thus representing a great economic concern. Considering the importance of the early diagnosis, rapid point of care testing (POCT) for ASF is highly demanded. In this work, we developed two strategies for the rapid onsite diagnosis of ASF, based on Lateral Flow Immunoassay (LFIA) and Recombinase Polymerase Amplification (RPA) techniques. The LFIA was a sandwich-type immunoassay exploiting a monoclonal antibody directed towards the p30 protein of the virus (Mab). The Mab was anchored onto the LFIA membrane to capture the ASFV and was also labelled with gold nanoparticles for staining the antibody-p30 complex. However, the use of the same antibody for capturing and as detector ligand showed a significant competitive effect for antigen binding, so required an experimental design to minimize reciprocal interference and maximize the response. The RPA assay, employing primers to the capsid protein p72 gene and an exonuclease III probe, was performed at 39 °C. The limit of detection of the method was assessed using a plasmid encoding the target gene and resulted in 5 copy/µL. The new LFIA and RPA were applied for ASFV detection in the animal tissues usually analysed by conventional assays (i.e., real-time PCR), such as kidney, spleen, and lymph nodes. A simple and universal virus extraction protocol was applied for sample preparation, followed by DNA extraction and purification for the RPA. The LFIA only required the addition of 3% H2O2 to limit matrix interference and prevent false positive results. The two rapid methods (25 min and 15 min were needed to complete the analysis for RPA and LFIA, respectively) showed high diagnostic specificity (100%) and sensitivity (93% and 87% for LFIA and RPA, respectively) for samples with high viral load (Ct < 27). False negative results were observed for samples with low viral load (Ct > 28) and/or also containing specific antibodies to ASFV, which decreased antigen availability and were indicative of a chronic, poorly transmissible infection. The simple and rapid sample preparation and the diagnostic performance of the LFIA suggested its large practical applicability for POC diagnosis of ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Nanopartículas del Metal , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Oro , Peróxido de Hidrógeno , Recombinasas , Anticuerpos Monoclonales
3.
Polymers (Basel) ; 14(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36501605

RESUMEN

In molecularly imprinted polymers, non-specific interactions are generally based on weak forces between the polymer surface and the sample matrix. Thus, additives able to interfere with such interactions should be able to significantly reduce any non-specific binding effect. Surfactants represent an interesting class of substances as they are cheap and easily available. Here, we present a study of the effect of three surfactants (the anionic sodium dodecylsulphate, SDS, the cationic cetyltrimethylammonium bromide (CTAB) and the non-ionic polyoxyethylene-(20)-sorbitan monolaurate Tween 20) on the binding affinity of a 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-imprinted polymer for the template and its analogue 2,4-dichlorophenoxyacetic acid (2,4-D). The experimental results indicate that increasing amounts of surfactant decrease the binding affinity for the ligands strongly for the ionic ones, and more weakly for the non-ionic one. This effect is general, as it occurs for both 2,4,5-T and 2,4-D and for both the imprinted and the not-imprinted polymers. It also proves that the magnitude of this effect mainly depends on the presence or absence of an ionic charge, and that the hydrophobic "tail" of surfactants plays only a minor role.

4.
Biosensors (Basel) ; 12(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36140124

RESUMEN

Lumpy skin disease (LSD) is an infectious disease affecting bovine with severe symptomatology. The implementation of effective control strategies to prevent infection outbreak requires rapid diagnostic tools. Two monoclonal antibodies (mAbs), targeting different epitopes of the LSDV structural protein p32, and gold nanoparticles (AuNPs) were used to set up a colorimetric sandwich-type lateral flow immunoassay (LFIA). Combinations including one or two mAbs, used either as the capture or detection reagent, were explored to investigate the hook effect due to antigen saturation by the detector antibody. The mAb-AuNP preparations were optimized by a full-factorial design of experiment to achieve maximum sensitivity. Opposite optimal conditions were selected when one Mab was used for capture and detection instead of two mAbs; thus, two rational routes for developing a highly sensitive LFIA according to Mab availability were outlined. The optimal LFIA for LSDV showed a low limit of detection (103.4 TCID50/mL), high inter- and intra-assay repeatability (CV% < 5.3%), and specificity (no cross-reaction towards 12 other viruses was observed), thus proving to be a good candidate as a useful tool for the point-of-need diagnosis of LSD.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , Nanopartículas del Metal , Animales , Bovinos , Anticuerpos Monoclonales , Epítopos , Oro/química , Inmunoensayo , Nanopartículas del Metal/química
5.
J Mater Chem B ; 10(35): 6724-6731, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35343553

RESUMEN

Solid phase synthesis (SPS) of molecularly imprinted nanopolymers (nanoMIPs) represents an innovative method to prepare nanomaterials with tailor-made molecular recognition properties towards peptides and proteins. The synthesis of nanoMIPs by SPS usually involves a pre-polymerization formulation, where the cross-linker is invariably N,N'-methylen-bis-acrylamide (BIS). To date, the effect of cross-linkers on the binding properties of nanoMIPs prepared using cross-linkers other than BIS has never been reported. In this work, in order to investigate the effect of different cross-linkers in protein-imprinted nanoMIPs prepared by SPS, alongside BIS we considered other similar cross-linkers: N,N'-ethylene dimethacrylamide (EDAM), N,O-bis-methacryloylethanolamine (NOBE), ethylene glycol dimethacrilate (EDMA) and glycerol dimethacrylate (GDMA), replacing BIS with them in pre-polymerization mixtures. The synthetized nanoMIPs were homogeneous, with a polydispersity index of 0.24-0.30 and a mean diameter of 129-169 nm in water. The binding properties of the nanoMIPs were measured via equilibrium partition experiments with the template, rabbit IgG (RIgG), and the selectivity was evaluated with respect to bovine IgG (BIgG), bovine serum albumin (BSA) and hen egg lysozyme (LZM). The experimental results show that all the cross-linkers, with the exception of EDMA, endowed nanoMIPs with high binding affinities for the template (BIS: 16.0 × 106 mol-1 L, EDAM: 8.8 × 106 mol-1 L, NOBE: 15.8 × 106 mol-1 L, and GDMA: 12.8 × 106 mol-1 L), medium to high imprinting factors (BIS: 12.3, EDAM: 5.5, NOBE: 7.2, and GDMA: 11.6) and good selectivity towards other proteins but markedly dependent on the structure of the cross-linker, confirming the importance of the latter in the SPS of imprinted nanopolymers.


Asunto(s)
Impresión Molecular , Acrilamidas , Animales , Glicoles de Etileno , Etilenos , Glicerol , Inmunoglobulina G , Impresión Molecular/métodos , Polímeros/química , Conejos , Albúmina Sérica Bovina , Agua
6.
Anal Bioanal Chem ; 414(18): 5473-5482, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35149878

RESUMEN

Lateral flow immunoassay (LFIA) is widely employed as point-of-care tests (POCT) for the diagnosis of infectious diseases. The accuracy of LFIA largely depends on the quality of the immunoreagents used. Typical LFIAs to reveal the immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) employ anti-human immunoglobulin (hIG) antibodies and recombinant viral antigens, which usually are unstable and poorly soluble. Broad selective bacterial proteins, such as Staphylococcal protein A (SpA) and Streptococcal protein G (SpG) can be considered alternatives to anti-hIG to increase versatility and sensitivity of serological LFIAs because of their high binding capacity, interspecies reactivity, and robustness. We developed two colorimetric LFA devices including SpA and SpG linked to gold nanoparticles (GNP) as detectors and explored the use of a specific, stable, and soluble immunodominant fraction of the nucleocapsid protein from SARS-CoV-2 as the capturing agent. The optimal amount of SpA-GNP and SpG-GNP conjugates and the protein-to-GNP ratios were defined through a full factorial experimental design to maximize the diagnostic sensitivity of the LFIAs. The new LFA devices were applied to analyze 105 human serum samples (69 positive and 36 negatives according to reference molecular diagnostic methods). The results showed higher sensitivity (89.9%, 95% CI 82.7-97.0) and selectivity (91.7%, 82.6-100) for the SpA-based compared to the SpG-based LFA. In addition, 18 serum samples from cats and dogs living with COVID-19 patients were analyzed and 14 showed detectable levels of anti-SARS-CoV-2 antibodies, thus illustrating the flexibility of the SpA- and SpG-based LFAs.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Animales , Anticuerpos Antivirales , COVID-19/diagnóstico , Gatos , Perros , Oro/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , SARS-CoV-2 , Sensibilidad y Especificidad
7.
Talanta ; 240: 123155, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942474

RESUMEN

The foot-and-mouth disease (FMD) is the most important transboundary viral disease of livestock in the international context, because of its extreme contagiousness, widespread diffusion, and severe impact on animal trade and animal productions. The rapid and on-field detection of the virus responsible for the FMD represents an urgent demand to efficiently control the diffusion of the infection, especially in low resource setting where the FMD is endemic. Colorimetric lateral flow immunoassay (LFIA) is largely used for the development of rapid tests, due to the extreme simplicity, cost-effectiveness, and on-field operation. In this work, two multiplex LFIA devices were designed for the diagnosis of FMD and the simultaneous identification of major circulating serotypes of the FMD virus. The LFIAs relied on the sandwich-type immunoassay and combined a set of well-characterised monoclonal antibodies (mAb) pairs. One LFIA aimed at detecting and identifying O, A and Asia-1 serotypes, the second device enabled the detection and differentiation of the SAT 1 and SAT 2 serotypes. Both devices also incorporated a broad-specific test line reporting on infection from FMDV, regardless the strain and the serotype involved. Accordingly, five and four reactive zones were arranged in the two devices to achieve a total of six simultaneous analyses. The development of the two multiplex systems highlighted for the first time the relevance of the mAb positioning along the LFIA strip in connection with the use of the same or different mAb as capture and detector ligands. In fact, the excess of detector mAb typically employed for increasing the sensitivity of sandwich immunoassay induced a new type of hook effect when combined with the same ligand used as the capture. This effect strongly impacted assay sensitivity, which could be improved by an intelligent alignment of the mAb pairs along the LFIA strip. The analytical and diagnostic performances of the two LFIAs were studied by testing reference FMDV strains grown in cell cultures and some representative field samples (epithelium homogenates). Almost equivalent sensitivity and specificity to those of a reference Ag-ELISA kit were shown, except for the serotype SAT 2. These simple devices are suitable in endemic regions for in-field diagnosis of FMD accompanied by virus serotyping and, moreover, could be deployed and used for rapid confirmation of secondary outbreaks after FMD incursions in free-areas, thus contributing to promptly implement control measures.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Fiebre Aftosa/diagnóstico , Inmunoensayo , Serogrupo
8.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34451197

RESUMEN

An innovative approach to imprinted nanoparticles (nanoMIPs) is represented by solid-phase synthesis. Since the polymeric chains grow over time and rearrange themselves around the template, the binding properties of nanoMIPs could depend on the polymerization time. Here we present an explorative study about the effect of different polymerization times on the binding properties of ciprofloxacin-imprinted nanoMIPs. The binding properties towards ciprofloxacin were studied by measuring the binding affinity constants (Keq) and the kinetic rate constants (kd, ka). Furthermore, selectivity and nonspecific binding were valued by measuring the rebinding of levofloxacin onto ciprofloxacin-imprinted nanoMIPs and ciprofloxacin onto diclofenac-imprinted nanoMIPs, respectively. The results show that different polymerization times produce nanoMIPs with different binding properties: short polymerization times (15 min) produced nanoMIPs with high binding affinity but low selectivity (Keq > 107 mol L-1, α ≈ 1); medium polymerization times (30 min-2 h) produced nanoMIPs with high binding affinity and selectivity (Keq ≥ 106 mol L-1, α < 1); and long polymerization times (>2 h) produced nanoMIPs with low binding affinity, fast dissociation kinetics and low selectivity (Keq ≤ 106 mol L-1, kdis > 0.2 min-1, α ≈ 1). The results can be explained as the combined effect of rearrangement and progressive stiffening of the polymer chains around the template molecules.

9.
Sensors (Basel) ; 21(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34372422

RESUMEN

The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed.


Asunto(s)
Mano , Pruebas Inmunológicas , Biomarcadores , Humanos , Inmunoensayo
10.
Talanta ; 223(Pt 1): 121737, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33303174

RESUMEN

A rapid test for detecting total immunoglobulins directed towards the nucleocapsid protein (N) of severe acute syndrome coronavirus 2 (SARS CoV-2) was developed, based on a multi-target lateral flow immunoassay comprising two test lines. Both test lines bound to several classes of immunoglobulins (G, M, and A). Specific anti-SARS immunoglobulins were revealed by a colorimetric probe formed by N and gold nanoparticles. Targeting the total antibodies response to infection enabled achieving 100% diagnostic specificity (95.75-100, C.I. 95%, n = 85 healthy and with other infections individuals) and 94.6% sensitivity (84.9-98.9, C.I. 95%, n = 62 SARS CoV-2 infected subjects) as early as 7 days post confirmation of positivity. Agreeing results with a reference serological ELISA were achieved, except for the earlier detection capability of the rapid test. Follow up of the three seroconverting patients endorsed the hypothesis of the random rise of the different immunoglobulins and strengthened the 'total antibodies' approach for the trustworthy detection of serological response to SARS CoV-2 infection.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/inmunología , Inmunoensayo/métodos , Adulto , Especificidad de Anticuerpos , Colorimetría , Diagnóstico Precoz , Diseño de Equipo , Oro , Humanos , Inmunoglobulinas/análisis , Masculino , Nanopartículas del Metal , Persona de Mediana Edad , Nucleocápside/química , Sensibilidad y Especificidad
11.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218125

RESUMEN

Multiplex lateral flow immunoassay (LFIA) is largely used for point-of-care testing to detect different pathogens or biomarkers in a single device. The increasing demand for multitargeting diagnostics requires multi-informative single tests. In this study, we demonstrated three strategies to upgrade standard multiplex LFIA to multimodal capacity. As a proof-of-concept, we applied the strategies to the differential diagnosis of Human Immunodeficiency Virus (HIV) infection, a widespread pathogen, for which conventional multiplex LFIA testing is well-established. In the new two-parameter LFIA (x2LFIA), we exploited color encoding, in which the binding of multiple targets occurs in one reactive band and the color of the probe reveals which one is present in the sample. By combining the sequential alignment of several reactive zones along the membrane of the LFIA strip and gold nanoparticles and gold nanostars for the differential visualization, in this demonstration, the x2LFIA can furnish information on HIV serotype and stage of infection in a single device. Three immunosensors were designed. The use of bioreagents as the capturing ligand anchored onto the membrane or as the detection ligand labelled with gold nanomaterials affected the performance of the x2LFIA. Higher detectability was achieved by the format involving the HIV-specific antigens as capturing agent and labelled secondary bioligands (anti-human immunoglobulins M and protein G) as the probes.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Infecciones por VIH/diagnóstico , Inmunoensayo , Nanopartículas del Metal , Oro , Humanos
12.
J Mater Chem B ; 8(45): 10439-10449, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33124633

RESUMEN

Approximately 32 million people have died of HIV infection since the beginning of the outbreak, and 38 million are currently infected. Among strategies adopted by the Joint United Nations Programme on HIV/AIDS to end the AIDS global epidemic, the treatment, diagnosis, and viral suppression of the infected subjects are considered crucial for HIV prevention and transmission. Although several antiretroviral (ARV) drugs are successfully used to manage HIV infection, their efficacy strictly relies on perfect adherence to the therapy, which is seldom achieved. Patient supervision, especially in HIV-endemic, low-resource settings, requires rapid, easy-to-use, and affordable analytical tools, such as the enzyme-linked immunosorbent assay (ELISA) and especially the lateral flow immunoassay (LFIA). In this work, high-affinity monoclonal antibodies were generated to develop ELISA and LFIA prototypes for monitoring tenofovir (TFV), an ARV drug present in several HIV treatments. TFV was functionalized by inserting a carboxylated C5-linker at the phosphonic group of the molecule, and the synthetic derivative was conjugated to proteins for mice immunization. Through a rigorous screening strategy of hybridoma supernatants, a panel of monoclonal antibodies strongly binding to TFV was obtained. Following antibody characterization for affinity and selectivity by competitive ELISA, a LFIA prototype was developed and tentatively applied to determine TFV in simulated urine. The point-of-care test showed ultra-high detectability (the visual limit of detection was 2.5 nM, 1.4 ng mL-1), excellent selectivity, and limited proneness to matrix interference, thus potentially making this rapid method a valuable tool for the on-site assessment of patient adherence to ARV therapy.


Asunto(s)
Fármacos Anti-VIH/orina , Anticuerpos Monoclonales/inmunología , Monitoreo de Drogas/métodos , Infecciones por VIH/tratamiento farmacológico , Inmunoensayo/métodos , Tenofovir/orina , Animales , Fármacos Anti-VIH/inmunología , Anticuerpos Monoclonales/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Ratones , Pruebas en el Punto de Atención , Tenofovir/inmunología
13.
Toxins (Basel) ; 12(4)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326118

RESUMEN

The diffusion of the legalization of cannabis for recreational, medicinal and nutraceutical uses requires the development of adequate analytical methods to assure the safety and security of such products. In particular, aflatoxins are considered to pose a major risk for the health of cannabis consumers. Among analytical methods that allows for adequate monitoring of food safety, immunoassays play a major role thanks to their cost-effectiveness, high-throughput capacity, simplicity and limited requirement for equipment and skilled operators. Therefore, a rapid and sensitive enzyme immunoassay has been adapted to measure the most hazardous aflatoxin B1 in cannabis products. The assay was acceptably accurate (recovery rate: 78-136%), reproducible (intra- and inter-assay means coefficients of variation 11.8% and 13.8%, respectively), and sensitive (limit of detection and range of quantification: 0.35 ng mL-1 and 0.4-2 ng mL-1, respectively corresponding to 7 ng g-1 and 8-40 ng g-1 ng g-1 in the plant) and provided results which agreed with a HPLC-MS/MS method for the direct analysis of aflatoxin B1 in cannabis inflorescence and leaves. In addition, the carcinogenic aflatoxin B1 was detected in 50% of the cannabis products analyzed (14 samples collected from small retails) at levels exceeding those admitted by the European Union in commodities intended for direct human consumption, thus envisaging the need for effective surveillance of aflatoxin contamination in legal cannabis.


Asunto(s)
Aflatoxina B1/análisis , Cannabis/química , Cromatografía Líquida de Alta Presión , Contaminación de Medicamentos , Técnicas para Inmunoenzimas , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...