Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(39): 33611-33618, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30152997

RESUMEN

A combined label-free and fluorescence surface optical technique was used to quantify the mass deposited in binary biomolecular coatings. These coatings were constituted by fibronectin (FN), to stimulate endothelialization, and phosphorylcholine (PRC), for its hemocompatibility, which are two properties of relevance for cardiovascular applications. One-dimensional photonic crystals sustaining a Bloch surface wave were used to characterize different FN/PRC coatings deposited by a combination of adsorption and grafting processes. In particular, the label-free results permitted to quantitatively assess the mass deposited in FN adsorbed (185 ng/cm2) and grafted (160 ng/cm2). PRC binding to grafted FN coatings was also quantified, showing a coverage as low as 10 and 12 ng/cm2 for adsorbed and grafted PRC, respectively. Moreover, desorption of FN deposited by adsorption was detected and quantified upon the addition of PRC. The data obtained by the surface optical technique were complemented by water contact angle and X-ray photoelectron spectroscopy (XPS) analyses. The results were in accordance with those obtained previously by qualitative and semiquantitative techniques (XPS, time-of-flight secondary ion mass spectrometry) on several substrates (PTFE and stainless steel), confirming that grafted FN coatings show higher stability than those obtained by FN adsorption.


Asunto(s)
Técnicas Biosensibles/métodos , Adsorción , Fibronectinas/química , Óptica y Fotónica/métodos , Fosforilcolina/química , Espectroscopía de Fotoelectrones
2.
Opt Express ; 23(16): 21175-80, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26367967

RESUMEN

A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 µm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.

3.
Opt Lett ; 39(22): 6525-8, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25490510

RESUMEN

We present a new method for coupling light to high-Q silica whispering gallery mode resonators (WGMs) that is based on long period fiber gratings (LPGs) written in silica fibers. An LPG allows selective excitation of high-order azimuthally symmetric cladding modes in a fiber. Coupling of these cladding modes to WGMs in silica resonators is possible when partial tapering of the fiber is also implemented in order to reduce the optical field size and increase its external evanescent portion. Importantly, the taper size is about one order of magnitude larger than that of a standard fiber taper coupler. The suggested approach is therefore much more robust and useful especially for practical applications. We demonstrate coupling to high-Q silica microspheres and microbubbles detecting the transmission dip at the fiber output when crossing a resonance. An additional feature of this approach is that by cascading LPGs with different periods, a wavelength selective addressing of different resonators along the same fiber is also possible.

4.
Biosens Bioelectron ; 60: 305-10, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24835405

RESUMEN

Long period fiber gratings have been effectively used in the field of biochemical sensing since a few years. Compared to other well-known label-free optical approaches, long period gratings (LPGs) take advantage of the typical peculiarity of optical fibers. Coupling the propagating core mode with a high-order cladding mode near its turn-around point (TAP) was the strategy adopted to achieve good performances without additional coatings, except for the sensing and selective biolayer deposited on the fiber. Both the modeling and manufacturing of TAP LPGs were discussed. After the functionalization of the fiber surface with the deposition of a Eudragit L100 copolymer layer followed by immunoglobulin G (IgG) covalent immobilization, an IgG/anti-IgG bioassay was implemented along the grating region and the kinetics of antibody/antigen interaction was analyzed. A quantitative comparison between a TAP LPG and a non-TAP LPG was carried out to highlight the improvement of the proposed immunosensor. The real effectiveness and feasibility of an LPG-based biosensor were demonstrated by using a complex matrix consisting of human serum, which also confirmed the specificity of the assay, and a limit of detection of 70 µg L(-1) (460 pM) was achieved.


Asunto(s)
Técnicas Biosensibles/instrumentación , Tecnología de Fibra Óptica/instrumentación , Inmunoensayo/instrumentación , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado
5.
Anal Bioanal Chem ; 402(1): 109-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22038659

RESUMEN

Optical fibre gratings have recently been suggested as optical platforms for chemical and biochemical sensing. On the basis of the measurement of refractive index changes induced by a chemical and biochemical interaction in the transmission spectrum along the fibres, they are proposed as a possible alternative to the other label-free optical approaches, such as surface plasmon resonance and optical resonators. The combination of the use of optical fibres with the fact that the signal modulation is spectrally encoded offers multiplexing and remote measurement capabilities which the other technology platforms are not able to or can hardly offer. The fundamentals of the different types of optical fibre gratings are described and the performances of the chemical and biochemical sensors based on this approach are reviewed. Advantages and limitations of optical fibre gratings are considered, with a look at new perspectives for their utilization in the field.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas de Química Analítica/instrumentación , Fibras Ópticas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA