Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003589

RESUMEN

Senescent cells secrete inflammatory proteins and small extracellular vesicles (sEVs), collectively termed senescence-associated secretory phenotype (SASP), and promote age-related diseases. Epigenetic alteration in senescent cells induces the expression of satellite II (SATII) RNA, non-coding RNA transcribed from pericentromeric repetitive sequences in the genome, leading to the expression of inflammatory SASP genes. SATII RNA is contained in sEVs and functions as an SASP factor in recipient cells. However, the molecular mechanism of SATII RNA loading into sEVs is unclear. In this study, we identified Y-box binding protein 1 (YBX1) as a carrier of SATII RNA via mass spectrometry analysis after RNA pull-down. sEVs containing SATII RNA induced cellular senescence and promoted the expression of inflammatory SASP genes in recipient cells. YBX1 knockdown significantly reduced SATII RNA levels in sEVs and inhibited the propagation of SASP in recipient cells. The analysis of the clinical dataset revealed that YBX1 expression is higher in cancer stroma than in normal stroma of breast and ovarian cancer tissues. Furthermore, high YBX1 expression was correlated with poor prognosis in breast and ovarian cancers. This study demonstrated that SATII RNA loading into sEVs is regulated via YBX1 and that YBX1 is a promising target in novel cancer therapy.


Asunto(s)
Vesículas Extracelulares , Neoplasias Ováricas , Humanos , Femenino , Satélite de ARN , Neoplasias Ováricas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Fenotipo , Células Cultivadas , Senescencia Celular/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(32): e2305046120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523559

RESUMEN

Cellular senescence and senescence-associated secretory phenotype (SASP) in stromal cells within the tumor microenvironment promote cancer progression. Although cellular senescence has been shown to induce changes in the higher-order chromatin structure and abnormal transcription of repetitive elements in the genome, the functional significance of these changes is unclear. In this study, we examined the human satellite II (hSATII) loci in the pericentromere to understand these changes and their functional significance. Our results indicated that the hSATII loci decompact during senescence induction, resulting in new DNA-DNA interactions in distinct genomic regions, which we refer to as DRISR (Distinctive Regions Interacted with Satellite II in Replicative senescent Fibroblasts). Interestingly, decompaction occurs before the expression of hSATII RNA. The DRISR with altered chromatin accessibility was enriched for motifs associated with cellular senescence and inflammatory SASP genes. Moreover, DNA-fluorescence in situ hybridization analysis of the breast cancer tissues revealed hSATII decompaction in cancer and stromal cells. Furthermore, we reanalyzed the single-cell assay for transposase-accessible chromatin with sequencing data and found increased SASP-related gene expression in fibroblasts exhibiting hSATII decompaction in breast cancer tissues. These findings suggest that changes in the higher-order chromatin structure of the pericentromeric repetitive sequences during cellular senescence might directly contribute to the cellular senescence phenotype and cancer progression via inflammatory gene expression.


Asunto(s)
Neoplasias de la Mama , Cromatina , Humanos , Femenino , Cromatina/genética , Microambiente Tumoral/genética , Hibridación Fluorescente in Situ , Senescencia Celular/genética , Fenotipo
3.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768745

RESUMEN

Senescent cells exhibit several typical features, including the senescence-associated secretory phenotype (SASP), promoting the secretion of various inflammatory proteins and small extracellular vesicles (EVs). SASP factors cause chronic inflammation, leading to age-related diseases. Recently, therapeutic strategies targeting senescent cells, known as senolytics, have gained attention; however, noninvasive methods to detect senescent cells in living organisms have not been established. Therefore, the goal of this study was to identify novel senescent markers using small EVs (sEVs). sEVs were isolated from young and senescent fibroblasts using three different methods, including size-exclusion chromatography, affinity column for phosphatidylserine, and immunoprecipitation using antibodies against tetraspanin proteins, followed by mass spectrometry. Principal component analysis revealed that the protein composition of sEVs released from senescent cells was significantly different from that of young cells. Importantly, we identified ATP6V0D1 and RTN4 as novel markers that are frequently upregulated in sEVs from senescent and progeria cells derived from patients with Werner syndrome. Furthermore, these two proteins were significantly enriched in sEVs from the serum of aged mice. This study supports the potential use of senescent markers from sEVs to detect the presence of senescent cells in vivo.


Asunto(s)
Senescencia Celular , Vesículas Extracelulares , Animales , Ratones , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo
4.
Commun Biol ; 5(1): 1420, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577784

RESUMEN

Cellular senescence caused by oncogenic stimuli is associated with the development of various age-related pathologies through the senescence-associated secretory phenotype (SASP). SASP is mediated by the activation of cytoplasmic nucleic acid sensors. However, the molecular mechanism underlying the accumulation of nucleotide ligands in senescent cells is unclear. In this study, we revealed that the expression of RNaseH2A, which removes ribonucleoside monophosphates (rNMPs) from the genome, is regulated by E2F transcription factors, and it decreases during cellular senescence. Residual rNMPs cause genomic DNA fragmentation and aberrant activation of cytoplasmic nucleic acid sensors, thereby provoking subsequent SASP factor gene expression in senescent cells. In addition, RNaseH2A expression was significantly decreased in aged mouse tissues and cells from individuals with Werner syndrome. Furthermore, RNaseH2A degradation using the auxin-inducible degron system induced the accumulation of nucleotide ligands and induction of certain tumourigenic SASP-like factors, promoting the metastatic properties of colorectal cancer cells. Our results indicate that RNaseH2A downregulation provokes SASP through nucleotide ligand accumulation, which likely contributes to the pathological features of senescent, progeroid, and cancer cells.


Asunto(s)
ADN , Neoplasias , Animales , Ratones , Senescencia Celular/genética , Fragmentación del ADN , Regulación hacia Abajo , Expresión Génica , Genómica , Ligandos , Neoplasias/genética , Neoplasias/metabolismo , Nucleótidos , Fenotipo , Humanos , Línea Celular
5.
Nat Commun ; 13(1): 4157, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851277

RESUMEN

Cellular senescence and cell competition are important tumor suppression mechanisms that restrain cells with oncogenic mutations at the initial stage of cancer development. However, the link between cellular senescence and cell competition remains unclear. Senescent cells accumulated during the in vivo aging process contribute toward age-related cancers via the development of senescence-associated secretory phenotype (SASP). Here, we report that hepatocyte growth factor (HGF), a SASP factor, inhibits apical extrusion and promotes basal protrusion of Ras-mutated cells in the cell competition assay. Additionally, cellular senescence induced by a high-fat diet promotes the survival of cells with oncogenic mutations, whereas crizotinib, an inhibitor of HGF signaling, provokes the removal of mutated cells from mouse livers and intestines. Our study provides evidence that cellular senescence inhibits cell competition-mediated elimination of oncogenic cells through HGF signaling, suggesting that it may lead to cancer incidence during aging.


Asunto(s)
Factor de Crecimiento de Hepatocito , Neoplasias , Animales , Carcinogénesis , Competencia Celular , Senescencia Celular/genética , Factor de Crecimiento de Hepatocito/genética , Ratones , Oncogenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...