Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 330: 121827, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368106

RESUMEN

The plant cell wall (PCW) inspires the preparation of fiber-based biomaterials, particularly emphasizing exploiting the intrinsic interactions within the load-bearing cellulose and hemicellulose network. Due to experimental difficulties in studying and interpreting the interaction between these polysaccharides, this research presents a numerical model based on coarse-grained molecular dynamics that evaluates the mechanical properties of fiber composites. To validate the model and explain the structural and mechanical role of hemicelluloses, bacterial cellulose (BC) was synthesized in the presence of different concentrations of xylan, arabinoxylan, xyloglucan, or glucomannan and subjected to nano- and macroscale structural and mechanical characterization. The data obtained were used to interpret the effects of each hemicellulose on the mechanics of the BC-hemicellulose composite based on the sensitivity of the model. The mechanical properties of the resulting simulated networks agreed well with the experimental observations of the BC-hemicellulose composites. Increased xylan and arabinoxylan contents increased the macroscale mechanical properties, fiber modulus (xylan), and fiber width (arabinoxylan). The addition of xyloglucan increased the mechanical properties of the composites in the elastic deformation phase, associated with an increase in the fiber modulus. Adding glucomannan to the culture medium decreased all the mechanical properties studied while the fiber width increased.


Asunto(s)
Celulosa , Xilanos , Celulosa/química , Xilanos/química , Simulación de Dinámica Molecular , Polisacáridos/química
2.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578772

RESUMEN

Sweet sorghum is a promising biomaterial, considering its nutritional and energy value, unpretentiousness in cultivation and its promising economic parameters of processing. The concentrate of sweet sorghum juice is an outstanding material for food purposes, meeting the emerging trends of the industry. This review presents data on the physicochemical properties of sweet sorghum juice and sirup, as well as technological details on the processes of its pretreatment, clarification, and concentration. Physicochemical properties of raw juice of sweet sorghum, as well as purified juice and sirup, are discussed in terms of material pretreatment, methods of clarification and concentration, and storage conditions. Comprehensive theoretical principles, methodological details and explanations of the consistency of sweet sorghum juice processing are given. This work focuses entirely on the relationship between sweet sorghum juice treatment methods and its composition and provides versatile source of information for food science community, farmers, and entrepreneurs.

3.
Biol Rev Camb Philos Soc ; 98(3): 887-899, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36692136

RESUMEN

Primary plant cell wall (PCW) is a highly organized network, its performance is dependent on cellulose, hemicellulose and pectic polysaccharides, their properties, interactions and assemblies. Their mutual relationships and functions in the cell wall can be better understood by means of conceptual models of their higher-order structures. Knowledge unified in the form of a conceptual model allows predictions to be made about the properties and behaviour of the system under study. Ongoing research in this field has resulted in a number of conceptual models of the cell wall. However, due to the currently limited research methods, the community of cell wall researchers have not reached a consensus favouring one model over another. Herein we present yet another research technique - numerical modelling - which is capable of resolving this issue. Even at the current stage of development of numerical techniques, due to their complexity, the in silico reconstruction of PCW remains a challenge for computational simulations. However, some difficulties have been overcome, thereby making it possible to produce advanced approximations of PCW structure and mechanics. This review summarizes the results concerning the simulation of polysaccharide interactions in PCW with regard to network fine structure, supramolecular properties and polysaccharide binding affinity. The in silico mechanical models presented herein incorporate certain physical and biomechanical aspects of cell wall architecture for the purposes of undertaking critical testing to bring about advances in our understanding of the mechanisms controlling cells and limiting cell wall expansion.


Asunto(s)
Celulosa , Polisacáridos , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Celulosa/análisis , Celulosa/química , Celulosa/metabolismo , Modelos Teóricos , Plantas/metabolismo , Pared Celular/química , Pared Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...