Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 918: 170315, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38278235

RESUMEN

High population and a wide range of activities in a megacity lead to large-scale ecological consequences which require the assessment with respect to distinct characteristics of climate, location, fuel consumption, and emission sources. In-depth study of aerosol characteristics was carried out in Moscow, the largest megacity in Europe, during the cold period (autumn and winter) and in spring. PM10 chemical speciation based on carbonaceous matter, water-soluble ions, and elements was carried out to reconstruct the PM mass and evaluate the primary and secondary aerosol contribution. For the whole study period organic matter, mineral dust, and secondary inorganic/organic accounted for 34, 24, and 16 % of PM10 mass, respectively. PM10, OC, and EC approached a maximum in spring and decreased in winter. Mineral dust seasonal fraction increased from spring (17 %) to autumn (32 %), and then decreased in winter (22 %). Secondary inorganic aerosols (SIA) in opposite showed the maximum 27 % in winter. K+ marked the residential biomass burning in the region surrounding a megacity in spring and autumn, agriculture fires in spring. In winter primary aerosol contribution dropped down 56 % while secondary approached practically equal 44 %. Source factors with the relative contributions are quantified, namely city dust (26 %), traffic (23 %), industrial (20 %), biomass burning (12 %), secondary (12 %), and de-icing salt (7 %); they were significantly varying between the cold heating period and springtime. The relevance of sources to meteorological parameters and mass transportation is investigated by using both bivariate polar plots and Lagrangian integrated trajectory (HYSPLIT) model. Trajectory clustering demonstrates regional sources being crucial contributors to PM10 pollution. Aerosol speciation and source apportion factors identify the differences of the Moscow urban background among large European and Asian cities due to northern climate conditions, fast construction, long-range transport from industrial-developing area surrounding a city, regional biomass burning preferably in spring and autumn, and winter road management.

2.
Environ Geochem Health ; 45(11): 7909-7931, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37498434

RESUMEN

Changes in the concentrations of PM10-bound potentially toxic elements (PTEs) during the COVID-19 lockdown period and after the revocation of restrictions were analyzed using the data received at the Aerosol Complex of Moscow State University in April-July 2020. During the lockdown, the input of biomass combustion products enriched in PTEs from the Moscow region hindered the decrease in pollutant concentrations. After the introduction of the self-isolation regime, lower concentrations of most PTEs occurred due to the decrease in anthropogenic activity and the rainy meteorological conditions. After the revocation of restrictive measures, the PTE concentrations began to increase. Multivariate statistical analysis (APCA-MLR) identified the main sources of atmospheric pollutants as urban dust, non-exhaust traffic emissions, and combustion and exhaust traffic emissions. PM10 particles were significantly enriched with Sb, Cd, Sn, Bi, S, Pb, Cu, Mo, and Zn. The total non-carcinogenic and carcinogenic risks, calculated according to the U.S. EPA model, decreased by 24% and 23% during the lockdown; after the removal of restrictions, they increased by 61% and 72%, respectively. The study provides insight into the PTE concentrations and their main sources at different levels of anthropogenic impact.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Contaminantes Ambientales , Humanos , Moscú , Monitoreo del Ambiente , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Polvo/análisis , Contaminantes Ambientales/análisis , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...