Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 12(11): e12378, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37932242

RESUMEN

Extracellular vesicles (EVs) play a crucial role in intercellular communication, participating in the paracrine trophic support or in the propagation of toxic molecules, including proteins. RTP801 is a stress-regulated protein, whose levels are elevated during neurodegeneration and induce neuron death. However, whether RTP801 toxicity is transferred trans-neuronally via EVs remains unknown. Hence, we overexpressed or silenced RTP801 protein in cultured cortical neurons, isolated their derived EVs (RTP801-EVs or shRTP801-EVs, respectively), and characterized EVs protein content by mass spectrometry (MS). RTP801-EVs toxicity was assessed by treating cultured neurons with these EVs and quantifying apoptotic neuron death and branching. We also tested shRTP801-EVs functionality in the pathologic in vitro model of 6-Hydroxydopamine (6-OHDA). Expression of RTP801 increased the number of EVs released by neurons. Moreover, RTP801 led to a distinct proteomic signature of neuron-derived EVs, containing more pro-apoptotic markers. Hence, we observed that RTP801-induced toxicity was transferred to neurons via EVs, activating apoptosis and impairing neuron morphology complexity. In contrast, shRTP801-EVs were able to increase the arborization in recipient neurons. The 6-OHDA neurotoxin elevated levels of RTP801 in EVs, and 6-OHDA-derived EVs lost the mTOR/Akt signalling activation via Akt and RPS6 downstream effectors. Interestingly, EVs derived from neurons where RTP801 was silenced prior to exposing them to 6-OHDA maintained Akt and RPS6 transactivation in recipient neurons. Taken together, these results suggest that RTP801-induced toxicity is transferred via EVs, and therefore, it could contribute to the progression of neurodegenerative diseases, in which RTP801 is involved.


Asunto(s)
Vesículas Extracelulares , Factores de Transcripción , Factores de Transcripción/metabolismo , Oxidopamina/toxicidad , Proteómica , Proteínas Proto-Oncogénicas c-akt , Vesículas Extracelulares/metabolismo
2.
Mol Cell Neurosci ; 127: 103903, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918552

RESUMEN

Fe65 is a brain enriched adaptor protein involved in various cellular processes, including actin cytoskeleton regulation, DNA repair and transcription. A well-studied interacting partner of Fe65 is the transmembrane amyloid-ß precursor protein (APP), which can undergo regulated intramembrane proteolysis (RIP). Following ß- and γ-secretase-mediated RIP, the released APP intracellular domain (AICD) together with Fe65 can translocate to the nucleus and regulate transcription. In this study, we investigated if Fe65 nuclear localization can also be regulated by different α-secretases, also known to participate in RIP of APP and other transmembrane proteins. We found that in both Phorbol 12-myristate 13-acetate and all-trans retinoic acid differentiated neuroblastoma cells a strong negative impact on Fe65 nuclear localization, equal to the effect observed upon γ-secretase inhibition, could be detected following inhibition of all three (ADAM9, ADAM10 and ADAM17) α-secretases. Moreover, using the comet assay and analysis of Fe65 dependent DNA repair associated posttranslational modifications of histones, we could show that inhibition of α-secretase-mediated Fe65 nuclear translocation resulted in impaired capacity of the cells to repair DNA damage. Taken together this suggests that α-secretase processing of APP and/or other Fe65 interacting transmembrane proteins play an important role in regulating Fe65 nuclear translocation and DNA repair.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Precursor de Proteína beta-Amiloide , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Reparación del ADN
3.
Cell Rep ; 42(10): 113269, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37864797

RESUMEN

Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.


Asunto(s)
Disfunción Cognitiva , Envejecimiento Saludable , Masculino , Femenino , Ratones , Animales , Macrófagos/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Ratones Noqueados , Disfunción Cognitiva/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...