Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 12(7): 5423-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22966583

RESUMEN

A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.

2.
J Nanosci Nanotechnol ; 12(7): 5783-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22966654

RESUMEN

In this paper, high-performance bottom-gate (BG) thin-film transistors (TFTs) with zinc oxide (ZnO) artificially location-controlled lateral grain growth have been prepared via low-temperature hydrothermal method. For the proper design of source/drain structure of ZnO/Ti/Pt thin films, the grains can be laterally grown from the under-cut ZnO beneath the Ti/Pt layer. Consequently, the single one vertical grain boundary perpendicular to the current flow will be produced in the channel region as the grown grains from the source/drain both sides are impinged. As compared with the conventional sputtered ZnO BG-TFTs, the proposed location-controlled hydrothermal ZnO BG-TFTs (W/L = 250 microm/10 microm) demonstrated the higher field-effect mobility of 6.09 cm2/V x s, lower threshold voltage of 3.67 V, higher on/off current ratio above 10(6), and superior current drivability, reflecting the high-quality ZnO thin films with less grain boundary effect in the channel region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...