Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plankton Res ; 45(5): 732-745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779673

RESUMEN

The planktic foraminifera Neogloboquadrina pachyderma is a calcifying marine protist and the dominant planktic foraminifera species in the polar oceans, making it a key species in marine polar ecosystems. The calcium carbonate shells of foraminifera are widely used in palaeoclimate studies because their chemical composition reflects the seawater conditions in which they grow. This species provides unique proxy data for past surface ocean hydrography, which can provide valuable insight to future climate scenarios. However, little is known about the response of N. pachyderma to variable and changing environmental conditions. Here, we present observations from large-scale culturing experiments where temperature, salinity and carbonate chemistry were altered independently. We observed overall low mortality, calcification of new chambers and addition of secondary calcite crust in all our treatments. In-culture asexual reproduction events also allowed us to monitor the variable growth of N. pachyderma's offspring. Several specimens had extended periods of dormancy or inactivity after which they recovered. These observations suggest that N. pachyderma can tolerate, adapt to and calcify within a wide range of environmental conditions. This has implications for the species-level response to ocean warming and acidification, for future studies aiming to culture N. pachyderma and use in palaeoenvironmental reconstruction.

2.
Nat Commun ; 14(1): 1303, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894593

RESUMEN

The Southern Ocean is a major sink of anthropogenic CO2 and an important foraging area for top trophic level consumers. However, iron limitation sets an upper limit to primary productivity. Here we report on a considerably dense late summer phytoplankton bloom spanning 9000 km2 in the open ocean of the eastern Weddell Gyre. Over its 2.5 months duration, the bloom accumulated up to 20 g C m-2 of organic matter, which is unusually high for Southern Ocean open waters. We show that, over 1997-2019, this open ocean bloom was likely driven by anomalies in easterly winds that push sea ice southwards and favor the upwelling of Warm Deep Water enriched in hydrothermal iron and, possibly, other iron sources. This recurring open ocean bloom likely facilitates enhanced carbon export and sustains high standing stocks of Antarctic krill, supporting feeding hot spots for marine birds and baleen whales.


Asunto(s)
Ecosistema , Cadena Alimentaria , Viento , Hierro , Fitoplancton , Regiones Antárticas , Océanos y Mares
3.
Environ Sci Technol ; 56(4): 2443-2454, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112833

RESUMEN

Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.


Asunto(s)
Charadriiformes , Mercurio , Animales , Regiones Árticas , Clorofila A , Monitoreo del Ambiente , Mercurio/análisis , Isótopos de Nitrógeno
4.
PLoS One ; 16(4): e0249178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33909623

RESUMEN

Planktonic calcifiers, the foraminiferal species Neogloboquadrina pachyderma and Turborotalita quinqueloba, and the thecosome pteropod Limacina helicina from plankton tows and surface sediments from the northern Barents Sea were studied to assess how shell density varies with depth habitat and ontogenetic processes. The shells were measured using X-ray microcomputed tomography (XMCT) scanning and compared to the physical and chemical properties of the water column including the carbonate chemistry and calcium carbonate saturation of calcite and aragonite. Both living L. helicina and N. pachyderma increased in shell density from the surface to 300 m water depth. Turborotalita quinqueloba increased in shell density to 150-200 m water depth. Deeper than 150 m, T. quinqueloba experienced a loss of density due to internal dissolution, possibly related to gametogenesis. The shell density of recently settled (dead) specimens of planktonic foraminifera from surface sediment samples was compared to the living fauna and showed a large range of dissolution states. This dissolution was not apparent from shell-surface texture, especially for N. pachyderma, which tended to be both thicker and denser than T. quinqueloba. Dissolution lowered the shell density while the thickness of the shell remained intact. Limacina helicina also increase in shell size with water depth and thicken the shell apex with growth. This study demonstrates that the living fauna in this specific area from the Barents Sea did not suffer from dissolution effects. Dissolution occurred after death and after settling on the sea floor. The study also shows that biomonitoring is important for the understanding of the natural variability in shell density of calcifying zooplankton.


Asunto(s)
Exoesqueleto/metabolismo , Clione/metabolismo , Foraminíferos/metabolismo , Plancton/metabolismo , Agua de Mar/química , Animales , Calcio/metabolismo
5.
J Exp Biol ; 223(Pt 11)2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32366687

RESUMEN

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly hatched larvae. Treatment-related embryo mortality until hatching (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacity. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although this is probably associated with energetic trade-offs. Interestingly, whole-larvae enzyme activity (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.


Asunto(s)
Gadus morhua , Agua de Mar , Animales , Branquias , Homeostasis , Concentración de Iones de Hidrógeno , Temperatura
6.
PLoS One ; 13(4): e0195587, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29634756

RESUMEN

Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-ice algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea ice and photophysiology of ice algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the ice and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, ice thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic pack-ice algae. It is likely that the pack ice was in a post-bloom situation during the late sea-ice season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the ice. In order to predict how key biogeochemical processes are affected by future changes in sea ice cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea ice affect the microbial community. Our results support existing hypothesis about sea-ice algal photophysiology, and provide additional observations on high nutrient concentrations in sea ice that could influence the planktonic communities as the ice is retreating.


Asunto(s)
Alimentos , Cubierta de Hielo , Luz , Microalgas/fisiología , Microalgas/efectos de la radiación , Océanos y Mares , Estaciones del Año , Regiones Antárticas , Biomasa , Microalgas/metabolismo
7.
Mar Biol ; 165(4): 63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29563649

RESUMEN

Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In the Baltic Proper, the extensive summer blooms dominated by the filamentous cyanobacteria Aphanizomenon sp., Dolichospermum spp. and the toxic Nodularia spumigena contribute up to 30% of the yearly new nitrogen and carbon exported to the sediment. In a 12 days outdoor microcosm experiment, we tested the combined effects of decreased salinity (from 6 to 3) and elevated CO2 concentrations (380 and 960 µatm) on a natural summer microplanktonic community, focusing on diazotrophic filamentous cyanobacteria. Elevated pCO2 had no significant effects on the natural microplanktonic community except for higher biovolume of Dolichospermum spp. and lower biomass of heterotrophic bacteria. At the end of the experimental period, heterotrophic bacterial abundance was correlated to the biovolume of N. spumigena. Lower salinity significantly affected cyanobacteria together with biovolumes of dinoflagellates, diatoms, ciliates and heterotrophic bacteria, with higher biovolume of Dolichospermum spp. and lower biovolume of N. spumigena, dinoflagellates, diatoms, ciliates and heterotrophic bacteria in reduced salinity. Although the salinity effects on diatoms were apparent, they could not clearly be separated from the influence of inorganic nutrients. We found a clear diurnal cycle in photosynthetic activity and pH, but without significant treatment effects. The same diurnal pattern was also observed in situ (pCO2, pH). Thus, considering the Baltic Proper, we do not expect any dramatic effects of increased pCO2 in combination with decreased salinity on the microplanktonic food web. However, long-term effects of the experimental treatments need to be further studied, and indirect effects of the lower salinity treatments could not be ruled out. Our study adds one piece to the complicated puzzle to reveal the combined effects of increased pCO2 and reduced salinity levels on the Baltic microplanktonic community.

8.
Sci Rep ; 7: 40850, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102329

RESUMEN

The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m-2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.


Asunto(s)
Fitoplancton/crecimiento & desarrollo , Regiones Árticas , Compuestos Inorgánicos de Carbono/análisis , Eutrofización , Haptophyta/crecimiento & desarrollo , Cubierta de Hielo , Nitratos/análisis , Imágenes Satelitales , Estaciones del Año
9.
PLoS One ; 11(8): e0155448, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27551924

RESUMEN

How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 µatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.


Asunto(s)
Ecosistema , Gadus morhua/fisiología , Calentamiento Global , Larva/fisiología , Océanos y Mares , Animales , Dióxido de Carbono/química , Cambio Climático , Explotaciones Pesqueras , Concentración de Iones de Hidrógeno , Dinámica Poblacional , Agua de Mar
10.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354939

RESUMEN

Increasing atmospheric CO2 levels are driving changes in the seawater carbonate system, resulting in higher pCO2 and reduced pH (ocean acidification). Many studies on marine organisms have focused on short-term physiological responses to increased pCO2, and few on slow-growing polar organisms with a relative low adaptation potential. In order to recognize the consequences of climate change in biological systems, acclimation and adaptation to new environments are crucial to address. In this study, physiological responses to long-term acclimation (194 days, approx. 60 asexual generations) of three pCO2 levels (280, 390 and 960 µatm) were investigated in the psychrophilic sea ice diatom Nitzschia lecointei. After 147 days, a small reduction in growth was detected at 960 µatm pCO2. Previous short-term experiments have failed to detect altered growth in N. lecointei at high pCO2, which illustrates the importance of experimental duration in studies of climate change. In addition, carbon metabolism was significantly affected by the long-term treatments, resulting in higher cellular release of dissolved organic carbon (DOC). In turn, the release of labile organic carbon stimulated bacterial productivity in this system. We conclude that long-term acclimation to ocean acidification is important for N. lecointei and that carbon overconsumption and DOC exudation may increase in a high-CO2 world.


Asunto(s)
Aclimatación , Dióxido de Carbono , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Regiones Antárticas , Carbonatos , Concentración de Iones de Hidrógeno , Agua de Mar/química
11.
Environ Microbiol ; 17(10): 3869-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25845501

RESUMEN

Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant.


Asunto(s)
Bacterias/genética , Dinoflagelados/genética , Cubierta de Hielo/microbiología , Microbiota/genética , Regiones Antárticas , Bacterias/aislamiento & purificación , Cambio Climático , Frío , Dinoflagelados/aislamiento & purificación , Ecosistema , Ambiente , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Salinidad , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...