Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4945, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999209

RESUMEN

Spatial arrangement of distinct Amazonian environments through time and its effect on specialized biota remain poorly known, fueling long-lasting debates about drivers of biotic diversification. We address the late Quaternary sediment deposition that assembled the world's largest seasonally flooded ecosystems. Genome sequencing was used to reconstruct the demographic history of bird species specialized in either early successional vegetation or mature floodplain forests. Sediment deposition that built seasonally flooded habitats accelerated throughout the Holocene (last 11,700 years) under sea level highstand and intensification of the South American Monsoon, at the same time as global increases in atmospheric methane concentration. Bird populations adapted to seasonally flooded habitats expanded due to enlargement of Amazonian river floodplains and archipelagos. Our findings suggest that the diversification of the biota specialized in seasonally flooded habitats is coupled to sedimentary budget changes of large rivers, which rely on combined effects of sea level and rainfall variations.


Asunto(s)
Ecosistema , Inundaciones , Animales , Aves , Bosques , Ríos
2.
Global Biogeochem Cycles ; 35(9): e2021GB006990, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35864845

RESUMEN

Particulate pyrogenic carbon (PyC) transported by rivers and aerosols, and deposited in marine sediments, is an important part of the carbon cycle. The chemical composition of PyC is temperature dependent and levoglucosan is a source-specific burning marker used to trace low-temperature PyC. Levoglucosan associated to particulate material has been shown to be preserved during riverine transport and marine deposition in high- and mid-latitudes, but it is yet unknown if this is also the case for (sub)tropical areas, where 90% of global PyC is produced. Here, we investigate transport and deposition of levoglucosan in suspended and riverbed sediments from the Amazon River system and adjacent marine deposition areas. We show that the Amazon River exports negligible amounts of levoglucosan and that concentrations in sediments from the main Amazon tributaries are not related to long-term mean catchment-wide fire activity. Levoglucosan concentrations in marine sediments offshore the Amazon Estuary are positively correlated to total organic content regardless of terrestrial or marine origin, supporting the notion that association of suspended or dissolved PyC to biogenic particles is critical in the preservation of PyC. We estimate that 0.5-10 × 106 g yr-1 of levoglucosan is exported by the Amazon River. This represents only 0.5-10 ppm of the total exported PyC and thereby an insignificant fraction, indicating that riverine derived levoglucosan and low-temperature PyC in the tropics are almost completely degraded before deposition. Hence, we suggest caution in using levoglucosan as tracer for past fire activity in tropical settings near rivers.

3.
Sci Rep ; 8(1): 5948, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654329

RESUMEN

Seafloor methane release can significantly affect the global carbon cycle and climate. Appreciable quantities of methane are stored in continental margin sediments as shallow gas and hydrate deposits, and changes in pressure, temperature and/or bottom-currents can liberate significant amounts of this greenhouse gas. Understanding the spatial and temporal dynamics of marine methane deposits and their relationships to environmental change are critical for assessing past and future carbon cycle and climate change. Here we present foraminiferal stable carbon isotope and sediment mineralogy records suggesting for the first time that seafloor methane release occurred along the southern Brazilian margin during the last glacial period (40-20 cal ka BP). Our results show that shallow gas deposits on the southern Brazilian margin responded to glacial-interglacial paleoceanographic changes releasing methane due to the synergy of sea level lowstand, warmer bottom waters and vigorous bottom currents during the last glacial period. High sea level during the Holocene resulted in an upslope shift of the Brazil Current, cooling the bottom waters and reducing bottom current strength, reducing methane emissions from the southern Brazilian margin.

4.
Sci Rep ; 7(1): 1561, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28484227

RESUMEN

The modern state of the Atlantic meridional overturning circulation promotes a northerly maximum of tropical rainfall associated with the Intertropical Convergence Zone (ITCZ). For continental regions, abrupt millennial-scale meridional shifts of this rainbelt are well documented, but the behavior of its oceanic counterpart is unclear due the lack of a robust proxy and high temporal resolution records. Here we show that the Atlantic ITCZ leaves a distinct signature in planktonic foraminifera assemblages. We applied this proxy to investigate the history of the Atlantic ITCZ for the last 30,000 years based on two high temporal resolution records from the western Atlantic Ocean. Our reconstruction indicates that the shallowest mixed layer associated with the Atlantic ITCZ unambiguously shifted meridionally in response to changes in the strength of the Atlantic meridional overturning with a southward displacement during Heinrich Stadials 2-1 and the Younger Dryas. We conclude that the Atlantic ITCZ was located at ca. 1°S (ca. 5° to the south of its modern annual mean position) during Heinrich Stadial 1. This supports a previous hypothesis, which postulates a southern hemisphere position of the oceanic ITCZ during climatic states with substantially reduced or absent cross-equatorial oceanic meridional heat transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA