Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Retrovirology ; 11: 48, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24957778

RESUMEN

BACKGROUND: The efficiency of CD4/CCR5 mediated HIV-1 entry has important implications for pathogenesis and transmission. The HIV-1 receptor affinity profiling (Affinofile) system analyzes and quantifies the infectivity of HIV-1 envelopes (Envs) across a spectrum of CD4/CCR5 expression levels and distills these data into a set of Affinofile metrics. The Affinofile system has shed light on how differential CD4/CCR5 usage efficiencies contributes to an array of Env phenotypes associated with cellular tropism, viral pathogenesis, and CCR5 inhibitor resistance. To facilitate more rapid, convenient, and robust analysis of HIV-1 entry phenotypes, we engineered a reporter Affinofile system containing a Tat- and Rev-dependent Gaussia luciferase-eGFP-Reporter (GGR) that is compatible with the use of pseudotyped or replication competent viruses with or without a virally encoded reporter gene. This GGR Affinofile system enabled a higher throughput characterization of CD4/CCR5 usage efficiencies associated with differential Env phenotypes. RESULTS: We first validated our GGR Affinofile system on isogenic JR-CSF Env mutants that differ in their affinity for CD4 and/or CCR5. We established that their GGR Affinofile metrics reflected their differential entry phenotypes on primary PBMCs and CD4+ T-cell subsets. We then applied GGR Affinofile profiling to reveal distinct entry phenotypes associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies (BNAbs). First, we profiled a panel of reference subtype B transmitted/founder (T/F) and chronic Envs (n = 12) by analyzing the infectivity of each Env across 25 distinct combinations of CD4/CCR5 expression levels. Affinofile metrics revealed that at low CCR5 levels, our panel of subtype B T/F Envs was more dependent on high levels of CD4 for HIV-1 entry compared to chronic Envs. Next, we analyzed a reference panel of 28 acute/early subtype A-D Envs, and noted that subtype C Envs could be distinguished from the other subtypes based on their infectivity profiles and relevant Affinofile metrics. Lastly, mutations known to confer resistance to VRC01 or PG6/PG19 BNAbs, when engineered into subtypes A-D Envs, resulted in significantly decreased CD4/CCR5 usage efficiency. CONCLUSIONS: GGR Affinofile profiling reveals pathophysiological phenotypes associated with varying HIV-1 entry efficiencies, and highlight the fitness costs associated with resistance to some broadly neutralizing antibodies.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/transmisión , VIH-1/fisiología , Internalización del Virus , Antígenos CD4/fisiología , VIH-1/clasificación , Humanos , Mutación , Fenotipo , Receptores CCR5/fisiología , Subgrupos de Linfocitos T/virología , Proteínas del Envoltorio Viral/fisiología
2.
Retrovirology ; 10: 43, 2013 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-23602046

RESUMEN

BACKGROUND: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. RESULTS: Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. CONCLUSIONS: Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.


Asunto(s)
Fármacos Anti-VIH/farmacología , Ciclohexanos/farmacología , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/efectos de los fármacos , VIH-1/genética , Mutación Missense , Triazoles/farmacología , Internalización del Virus/efectos de los fármacos , Fármacos Anti-VIH/uso terapéutico , Ciclohexanos/uso terapéutico , Variación Genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , VIH-1/fisiología , Humanos , Maraviroc , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Insuficiencia del Tratamiento , Triazoles/uso terapéutico
3.
Immunity ; 38(1): 92-105, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23273844

RESUMEN

Interferons (IFN) are essential antiviral cytokines that establish the cellular antiviral state through upregulation of hundreds of interferon-stimulated genes (ISGs), most of which have uncharacterized functions and mechanisms. We identified cholesterol-25-hydroxylase (CH25H) as a broadly antiviral ISG. CH25H converts cholesterol to a soluble antiviral factor, 25-hydroxycholesterol (25HC). 25HC treatment in cultured cells broadly inhibited growth of enveloped viruses including VSV, HSV, HIV, and MHV68 and acutely pathogenic EBOV, RVFV, RSSEV, and Nipah viruses under BSL4 conditions. It suppressed viral growth by blocking membrane fusion between virus and cell. In animal models, Ch25h-deficient mice were more susceptible to MHV68 lytic infection. Moreover, administration of 25HC in humanized mice suppressed HIV replication and reversed T cell depletion. Thus, our studies demonstrate a unique mechanism by which IFN achieves its antiviral state through the production of a natural oxysterol to inhibit viral entry and implicate membrane-modifying oxysterols as potential antiviral therapeutics.


Asunto(s)
Antivirales/farmacología , Hidroxicolesteroles/metabolismo , Interferones/farmacología , Esteroide Hidroxilasas/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/virología , Virus ADN/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxicolesteroles/farmacología , Fusión de Membrana/efectos de los fármacos , Ratones , Ratones Noqueados , Virus ARN/efectos de los fármacos , Esteroide Hidroxilasas/genética , Proteínas Virales/metabolismo
4.
J Leukoc Biol ; 93(1): 113-26, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23077246

RESUMEN

BR-derived HIV-1 strains have an exceptional ability to enter macrophages via mechanisms involving their gp120 Env that remain incompletely understood. Here, we used cell-based affinity-profiling methods and mathematical modeling to generate quantitative VERSA metrics that simultaneously measure Env-CD4 and Env-CCR5 interactions. These metrics were analyzed to distinguish the phenotypes of M-tropic and non-M-tropic CCR5-using HIV-1 variants derived from autopsy BRs and LNs, respectively. We show that highly M-tropic Env variants derived from brain can be defined by two distinct and simultaneously occurring phenotypes. First, BR-derived Envs demonstrated an enhanced ability to interact with CD4 compared with LN-derived Envs, permitting entry into cells expressing scant levels of CD4. Second, BR-derived Envs displayed an altered mechanism of engagement between CD4-bound gp120 and CCR5 occurring in tandem. With the use of epitope mapping, mutagenesis, and structural studies, we show that this altered mechanism is characterized by increased exposure of CD4-induced epitopes in gp120 and by a more critical interaction between BR-derived Envs and the CCR5 N-terminus, which was associated with the predicted presence of additional atomic contacts formed at the gp120-CCR5 N-terminus interface. Our results suggest that BR-derived HIV-1 variants with highly efficient macrophage entry adopt conformations in gp120 that simultaneously alter the way in which the Env interacts with CD4 and CCR5.


Asunto(s)
Encéfalo/virología , Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Macrófagos/virología , Receptores CCR5/metabolismo , Células Cultivadas , Mapeo Epitopo , Proteína gp120 de Envoltorio del VIH/química , Humanos , Modelos Teóricos , Tropismo Viral/fisiología
5.
J Virol ; 87(4): 2094-108, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23192877

RESUMEN

Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope's natural tropism while modifying the receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular marker of "stemness" (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific cancers. NiV entry requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (∼10(6) IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5FΔN3). T5FΔN3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2(+) cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5FΔN3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2(+) populations in vivo or in vitro.


Asunto(s)
Efrina-B2/metabolismo , Vectores Genéticos , Lentivirus/genética , Virus Nipah/fisiología , Receptores Virales/metabolismo , Células Madre/virología , Internalización del Virus , Animales , Células Cultivadas , Humanos , Ratones , Biología Molecular/métodos , Virus Nipah/genética , Transducción Genética
6.
J Virol ; 87(5): 2401-11, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269796

RESUMEN

Infection by HIV-1 most often results from the successful transmission and propagation of a single virus variant, termed the transmitted/founder (T/F) virus. Here, we compared the attachment and entry properties of envelope (Env) glycoproteins from T/F and chronic control (CC) viruses. Using a panel of 40 T/F and 47 CC Envs, all derived by single genome amplification, we found that 52% of clade C and B CC Envs exhibited partial resistance to the CCR5 antagonist maraviroc (MVC) on cells expressing high levels of CCR5, while only 15% of T/F Envs exhibited this same property. Moreover, subtle differences in the magnitude with which MVC inhibited infection on cells expressing low levels of CCR5, including primary CD4(+) T cells, were highly predictive of MVC resistance when CCR5 expression levels were high. These results are consistent with previous observations showing a greater sensitivity of T/F Envs to MVC inhibition on cells expressing very high levels of CCR5 and indicate that CC Envs are often capable of recognizing MVC-bound CCR5, albeit inefficiently on cells expressing physiologic levels of CCR5. When CCR5 expression levels are high, this phenotype becomes readily detectable. The utilization of drug-bound CCR5 conformations by many CC Envs was seen with other CCR5 antagonists, with replication-competent viruses, and did not obviously correlate with other phenotypic traits. The striking ability of clade C and B CC Envs to use MVC-bound CCR5 relative to T/F Envs argues that the more promiscuous use of CCR5 by these Env proteins is selected against at the level of virus transmission and is selected for during chronic infection.


Asunto(s)
Ciclohexanos/farmacología , VIH-1/fisiología , Receptores CCR5/metabolismo , Triazoles/farmacología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Antagonistas de los Receptores CCR5 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Maraviroc , Acoplamiento Viral , Internalización del Virus
7.
Virology ; 435(1): 81-91, 2013 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-23217618

RESUMEN

HIV-1 envelope (Env) uses CD4 and a coreceptor (CCR5 and/or CXCR4) for viral entry. The efficiency of receptor/coreceptor mediated entry has important implications for HIV pathogenesis and transmission. The advent of CCR5 inhibitors in clinical use also underscores the need for quantitative and predictive tools that can guide therapeutic management. Historically, measuring the efficiency of CD4/CCR5 mediated HIV entry has relied on surrogate and relatively slow throughput assays that cannot adequately capture the full spectrum of Env phenotypes. In this review, we discuss the details of the Affinofile receptor affinity profiling system that has provided a quantitative and higher throughput method to characterize viral entry efficiency as a function of CD4 and CCR5 expression levels. We will then review how the Affinofile system has been used to reveal the distinct pathophysiological properties associated with Env entry phenotypes and discuss potential shortcomings of the current system.


Asunto(s)
Antígenos CD4/genética , Infecciones por VIH/virología , VIH-1/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Antígenos CD4/metabolismo , Expresión Génica , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/patogenicidad , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Fenotipo , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Tropismo Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...