Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 16(9): 2399-414, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27545884

RESUMEN

Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfunction induced by rotenone activates the p38MAPK/CREB/ATF-7-dependent innate immune response pathway in intestinal cells of C. elegans. Activation of p38MAPK in the gut is neuroprotective. Enhancing the p38MAPK-mediated immune pathway in intestinal cells alone suppresses rotenone-induced dopaminergic neuron loss, while downregulating it in the intestine exacerbates neurodegeneration. The p38MAPK/ATF-7 immune pathway modulates autophagy and requires autophagy and the PTEN-induced putative kinase PINK-1 for conferring neuroprotection. Thus, mitochondrial damage induces the clearance of mitochondria by the immune pathway, protecting the organism from the toxic effects of mitochondrial dysfunction. We propose that mitochondria are subject to constant surveillance by innate immune mechanisms.


Asunto(s)
Factores de Transcripción Activadores/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Neuronas Dopaminérgicas/inmunología , Complejo I de Transporte de Electrón/genética , Mitocondrias/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Factores de Transcripción Activadores/inmunología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/patología , Regulación de la Expresión Génica , Inmunidad Innata , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Mitofagia/genética , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/genética , Degeneración Nerviosa/inmunología , Rotenona/toxicidad , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
2.
J Cell Sci ; 129(5): 921-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26787744

RESUMEN

The endoplasmic reticulum (ER) serves virtually all aspects of cell physiology and, by pathways that are incompletely understood, is dynamically remodeled to meet changing cell needs. Inositol-requiring enzyme 1 (Ire1), a conserved core protein of the unfolded protein response (UPR), participates in ER remodeling and is particularly required during the differentiation of cells devoted to intense secretory activity, so-called 'professional' secretory cells. Here, we characterize the role of Ire1 in ER differentiation in the developing Drosophila compound eye photoreceptors (R cells). As part of normal development, R cells take a turn as professional secretory cells with a massive secretory effort that builds the photosensitive membrane organelle, the rhabdomere. We find rough ER sheets proliferate as rhabdomere biogenesis culminates, and Ire1 is required for normal ER differentiation. Ire1 is active early in R cell development and is required in anticipation of peak biosynthesis. Without Ire1, the amount of rough ER sheets is strongly reduced and the extensive cortical ER network at the rhabdomere base, the subrhabdomere cisterna (SRC), fails. Instead, ER proliferates in persistent and ribosome-poor tubular tangles. A phase of Ire1 activity early in R cell development thus shapes dynamic ER.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Retículo Endoplásmico/fisiología , Endorribonucleasas/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/ultraestructura , Femenino , Masculino , Morfogénesis , Células Fotorreceptoras de Invertebrados/ultraestructura
3.
Curr Biol ; 25(2): 163-174, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25557666

RESUMEN

BACKGROUND: Cellular mechanisms aimed at repairing protein damage and maintaining homeostasis, widely understood to be triggered by the damage itself, have recently been shown to be under cell nonautonomous control in the metazoan C. elegans. The heat shock response (HSR) is one such conserved mechanism, activated by cells upon exposure to proteotoxic conditions such as heat. Previously, we had shown that this conserved cytoprotective response is regulated by the thermosensory neuronal circuitry of C. elegans. Here, we investigate the mechanisms and physiological relevance of neuronal control. RESULTS: By combining optogenetic methods with live visualization of the dynamics of the heat shock transcription factor (HSF1), we show that excitation of the AFD thermosensory neurons is sufficient to activate HSF1 in another cell, even in the absence of temperature increase. Excitation of the AFD thermosensory neurons enhances serotonin release. Serotonin release elicited by direct optogenetic stimulation of serotonergic neurons activates HSF1 and upregulates molecular chaperones through the metabotropic serotonin receptor SER-1. Consequently, excitation of serotonergic neurons alone can suppress protein misfolding in C. elegans peripheral tissue. CONCLUSIONS: These studies imply that thermosensory activity coupled to serotonergic signaling is sufficient to activate the protective HSR prior to frank proteotoxic damage. The ability of neurosensory release of serotonin to control cellular stress responses and activate HSF1 has powerful implications for the treatment of protein conformation diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , Respuesta al Choque Térmico , Serotonina/metabolismo , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura , Factores de Transcripción/metabolismo
4.
PLoS Genet ; 8(5): e1002725, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615583

RESUMEN

Activated Cdc42 kinases (Acks) are evolutionarily conserved non-receptor tyrosine kinases. Activating somatic mutations and increased ACK1 protein levels have been found in many types of human cancers and correlate with a poor prognosis. ACK1 is activated by epidermal growth factor (EGF) receptor signaling and functions to regulate EGF receptor turnover. ACK1 has additionally been found to propagate downstream signals through the phosphorylation of cancer relevant substrates. Using Drosophila as a model organism, we have determined that Drosophila Ack possesses potent anti-apoptotic activity that is dependent on Ack kinase activity and is further activated by EGF receptor/Ras signaling. Ack anti-apoptotic signaling does not function through enhancement of EGF stimulated MAP kinase signaling, suggesting that it must function through phosphorylation of some unknown effector. We isolated several putative Drosophila Ack interacting proteins, many being orthologs of previously identified human ACK1 interacting proteins. Two of these interacting proteins, Drk and yorkie, were found to influence Ack signaling. Drk is the Drosophila homolog of GRB2, which is required to couple ACK1 binding to receptor tyrosine kinases. Drk knockdown blocks Ack survival activity, suggesting that Ack localization is important for its pro-survival activity. Yorkie is a transcriptional co-activator that is downstream of the Salvador-Hippo-Warts pathway and promotes transcription of proliferative and anti-apoptotic genes. We find that yorkie and Ack synergistically interact to produce tissue overgrowth and that yorkie loss of function interferes with Ack anti-apoptotic signaling. Our results demonstrate how increased Ack signaling could contribute to cancer when coupled to proliferative signals.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Drosophila , Drosophila melanogaster , Proteínas de Unión al GTP , Proteínas Tirosina Quinasas , Animales , Apoptosis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Receptores ErbB/metabolismo , Ojo/citología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Mutación , Neuropéptidos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Activación Transcripcional , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
5.
Science ; 303(5658): 669-72, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14752161

RESUMEN

Genes normally resident in euchromatic domains are silenced when packaged into heterochromatin, as exemplified in Drosophila melanogaster by position effect variegation (PEV). Loss-of-function mutations resulting in suppression of PEV have identified critical components of heterochromatin, including proteins HP1, HP2, and histone H3 lysine 9 methyltransferase. Here, we demonstrate that this silencing is dependent on the RNA interference machinery, using tandem mini-white arrays and white transgenes in heterochromatin to show loss of silencing as a result of mutations in piwi, aubergine, or spindle-E (homeless), which encode RNAi components. These mutations result in reduction of H3 Lys9 methylation and delocalization of HP1 and HP2, most dramatically in spindle-E mutants.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Silenciador del Gen , Heterocromatina/metabolismo , Interferencia de ARN , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Alelos , Animales , Proteínas Argonautas , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Genes de Insecto , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Mutación , Proteínas/genética , Proteínas/fisiología , Complejo Silenciador Inducido por ARN , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA