Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 29(11): 1703-1724, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37643813

RESUMEN

Signal recognition particle (SRP) pathway function in protein translocation across the endoplasmic reticulum (ER) is well established; its role in RNA localization to the ER remains, however, unclear. In current models, mRNAs undergo translation- and SRP-dependent trafficking to the ER, with ER localization mediated via interactions between SRP-bound translating ribosomes and the ER-resident SRP receptor (SR), a heterodimeric complex comprising SRA, the SRP-binding subunit, and SRB, an integral membrane ER protein. To study SRP pathway function in RNA localization, SR knockout (KO) mammalian cell lines were generated and the consequences of SR KO on steady-state and dynamic mRNA localization examined. CRISPR/Cas9-mediated SRPRB KO resulted in profound destabilization of SRA. Pairing siRNA silencing of SRPRA in SRPRB KO cells yielded viable SR KO cells. Steady-state mRNA compositions and ER-localization patterns in parental and SR KO cells were determined by cell fractionation and deep sequencing. Notably, steady-state cytosol and ER mRNA compositions and partitioning patterns were largely unaltered by loss of SR expression. To examine SRP pathway function in RNA localization dynamics, the subcellular trafficking itineraries of newly exported mRNAs were determined by 4-thiouridine (4SU) pulse-labeling/4SU-seq/cell fractionation. Newly exported mRNAs were distinguished by high ER enrichment, with ER localization being SR-independent. Intriguingly, under conditions of translation initiation inhibition, the ER was the default localization site for all newly exported mRNAs. These data demonstrate that mRNA localization to the ER can be uncoupled from the SRP pathway function and reopen questions regarding the mechanism of RNA localization to the ER.


Asunto(s)
Retículo Endoplásmico , Partícula de Reconocimiento de Señal , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Citosol/metabolismo , Proteínas de la Membrana/genética , Mamíferos/genética
2.
RNA ; 27(10): 1241-1256, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34244458

RESUMEN

Stress granules (SGs) are membraneless organelles composed of mRNAs and RNA binding proteins which undergo assembly in response to stress-induced inactivation of translation initiation. In general, SG recruitment is limited to a subpopulation of a given mRNA species and RNA-seq analyses of purified SGs revealed that signal sequence-encoding (i.e., endoplasmic reticulum [ER]-targeted) transcripts are significantly underrepresented, consistent with prior reports that ER localization can protect mRNAs from SG recruitment. Using translational profiling, cell fractionation, and single molecule mRNA imaging, we examined SG biogenesis following activation of the unfolded protein response (UPR) by 1,4-dithiothreitol (DTT) and report that gene-specific subsets of cytosolic and ER-targeted mRNAs can be recruited into SGs. Furthermore, we demonstrate that SGs form in close proximity to or directly associated with the ER membrane. ER-associated SG assembly was also observed during arsenite stress, suggesting broad roles for the ER in SG biogenesis. Recruitment of a given mRNA into SGs required stress-induced translational repression, though translational inhibition was not solely predictive of an mRNA's propensity for SG recruitment. SG formation was prevented by the transcriptional inhibitors actinomycin D or triptolide, suggesting a functional link between gene transcriptional state and SG biogenesis. Collectively these data demonstrate that ER-targeted and cytosolic mRNAs can be recruited into ER-associated SGs and this recruitment is sensitive to transcriptional inhibition. We propose that newly transcribed mRNAs exported under conditions of suppressed translation initiation are primary SG substrates, with the ER serving as the central subcellular site of SG formation.


Asunto(s)
Gránulos Citoplasmáticos/genética , Retículo Endoplásmico/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Respuesta de Proteína Desplegada , Biomarcadores/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Citosol/efectos de los fármacos , Citosol/metabolismo , Dactinomicina/farmacología , Diterpenos/farmacología , Ditiotreitol/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Compuestos Epoxi/farmacología , Expresión Génica , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Biogénesis de Organelos , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Fenantrenos/farmacología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Imagen Individual de Molécula , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
3.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321322

RESUMEN

A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways.IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The molecular mechanism by which DENV commandeers the host cell protein synthesis machinery and the subcellular organization of DENV replication and viral protein synthesis is poorly understood. Here, we report that DENV has an almost exclusively ER-localized life cycle, with viral replication and translation largely restricted to the ER. Surprisingly, DENV infection largely affects only ER-associated translation, with relatively modest effects on host cell translation in the cytosol. DENV RNA translation is very inefficient, likely representing a strategy to minimize disruption of ER proteostasis. Overall these findings demonstrate that DENV has evolved an ER-compartmentalized life cycle; thus, targeting the molecular signatures and regulation of the DENV-ER interaction landscape may reveal strategies for therapeutic intervention.


Asunto(s)
Virus del Dengue/fisiología , Dengue/inmunología , Retículo Endoplásmico/inmunología , Evasión Inmune , Biosíntesis de Proteínas/inmunología , ARN Mensajero/inmunología , ARN Viral/inmunología , Replicación Viral/inmunología , Línea Celular Tumoral , Dengue/patología , Retículo Endoplásmico/patología , Retículo Endoplásmico/virología , Humanos , Interferones/inmunología , Respuesta de Proteína Desplegada/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...