Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 15(3): e20227, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35880472

RESUMEN

Understanding the genetic control and inheritance of grain quality traits is instrumental in facilitating end-use quality improvement. This study was conducted to identify and map quantitative trait loci (QTL) controlling protein, starch, and amylose content in grain sorghum [Sorghum bicolor (L.) Moench] grown under variable environmental conditions. A recombinant inbred line (RIL) population derived from a cross between RTx430 and SC35 was evaluated in six environments across Hays and Manhattan, KS. Significant variation was observed in genotype, environment, and genotype × environment interaction for all three quality traits. Unlike the RILs, the two parental lines did not show significant differences for these traits. However, significant transgressive segregation was observed for all traits resulting in phenotypic performance extending beyond the two parents. A total of seven protein, 10 starch, and 10 amylose content QTL were identified. Chromosomal regions and phenotypic variation (PVE) of QTL were variable across growing conditions. Quantitative trait loci hotspots for all three traits were detected on chromosomes 1 (115.2-119.2 cM) and 2 (118.2-127.4 cM). Candidate gene analysis indicated that these QTL hotspots were conditioned by several transcription factors, such as Cytochrome P450 and basic helix-loop-helix DNA binding protein, which regulate starch and protein accumulation in the grain. The identified genomic regions and underlying candidate genes provide a starting point for further validation and marker-assisted gene pyramiding to improve sorghum grain quality.


Asunto(s)
Sitios de Carácter Cuantitativo , Sorghum , Amilosa/análisis , Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Grano Comestible/genética , Sorghum/genética , Almidón , Factores de Transcripción/genética
2.
Planta ; 255(2): 40, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35038036

RESUMEN

MAIN CONCLUSION: QTL hotspots identified for selected source-sink-related traits provide the opportunity for pyramiding favorable alleles for improving sorghum productivity under diverse environments. A sorghum bi-parental mapping population was evaluated under six different environments at Hays and Manhattan, Kansas, USA, in 2016 and 2017, to identify genomic regions controlling source-sink relationships. The population consisted of 210 recombinant inbred lines developed from US elite post-flowering drought susceptible (RTx430) and a known post-flowering drought tolerant cultivar (SC35). Selected physiological traits related to source (effective quantum yield of photosystem II and chlorophyll index), sink (grain yield per panicle) and panicle neck diameter were recorded during grain filling. The results showed strong phenotypic and genotypic association between panicle neck diameter and grain yield per panicle during mid-grain filling and at maturity. Multiple QTL model revealed 5-12 including 2-5 major QTL for each trait. Among them 3, 7 and 8 QTL for quantum yield, panicle neck diameter and chlorophyll index, respectively, have not been identified previously in sorghum. Phenotypic variation explained by QTL identified across target traits ranged between 5.5 and 25.4%. Panicle neck diameter and grain yield per panicle were positively associated, indicating the possibility of targeting common co-localized QTL to improve both traits simultaneously through marker-assisted selection. Three major QTL hotspots, controlling multiple traits were identified on chromosome 1 (52.23-61.18 Mb), 2 (2.52-11.43 Mb) and 3 (1.32-3.95 Mb). The identified genomic regions and underlying candidate genes can be utilized in pyramiding favorable alleles for improving source-sink relationships in sorghum under diverse environments.


Asunto(s)
Sorghum , Mapeo Cromosómico , Grano Comestible/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Sorghum/genética
3.
Front Plant Sci ; 12: 715940, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691097

RESUMEN

Low seed and meal protein concentration in modern high-yielding soybean [Glycine max L. (Merr.)] cultivars is a major concern but there is limited information on effective cultural practices to address this issue. In the objective of dealing with this problem, this study conducted field experiments in 2019 and 2020 to evaluate the response of seed and meal protein concentrations to the interactive effects of late-season inputs [control, a liquid Bradyrhizobium japonicum inoculation at R3, and 202 kg ha-1 nitrogen (N) fertilizer applied after R5], previous cover crop (fallow or cereal cover crop with residue removed), and short- and full-season maturity group cultivars at three U.S. locations (Fayetteville, Arkansas; Lexington, Kentucky; and St. Paul, Minnesota). The results showed that cover crops had a negative effect on yield in two out of six site-years and decreased seed protein concentration by 8.2 mg g-1 on average in Minnesota. Inoculant applications at R3 did not affect seed protein concentration or yield. The applications of N fertilizer after R5 increased seed protein concentration by 6 to 15 mg g-1, and increased yield in Arkansas by 13% and in Minnesota by 11% relative to the unfertilized control. This study showed that late-season N applications can be an effective cultural practice to increase soybean meal protein concentration in modern high-yielding cultivars above the minimum threshold required by the industry. New research is necessary to investigate sustainable management practices that increase N availability to soybeans late in the season.

4.
Plant Physiol ; 186(3): 1562-1579, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33856488

RESUMEN

Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/genética , Sorghum/crecimiento & desarrollo , Sorghum/genética , Aprendizaje Profundo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Hojas de la Planta
5.
Sci Rep ; 10(1): 22213, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335185

RESUMEN

Winter wheat (Triticum aestivum L.) is essential to maintain food security for a large proportion of the world's population. With increased risk from abiotic stresses due to climate variability, it is imperative to understand and minimize the negative impact of these stressors, including high night temperature (HNT). Both globally and at regional scales, a differential rate of increase in day and night temperature is observed, wherein night temperatures are increasing at a higher pace and the trend is projected to continue into the future. Previous studies using controlled environment facilities and small field-based removable chambers have shown that post-anthesis HNT stress can induce a significant reduction in wheat grain yield. A prototype was previously developed by utilizing field-based tents allowing for simultaneous phenotyping of popular winter wheat varieties from US Midwest and advanced breeding lines. Hence, the objectives of the study were to (i) design and build a new field-based infrastructure and test and validate the uniformity of HNT stress application on a scaled-up version of the prototype (ii) improve and develop a more sophisticated cyber-physical system to sense and impose post-anthesis HNT stress uniformly through physiological maturity within the scaled-up tents; and (iii) determine the impact of HNT stress during grain filling on the agronomic and grain quality parameters including starch and protein concentration. The system imposed a consistent post-anthesis HNT stress of + 3.8 °C until maturity and maintained uniform distribution of stress which was confirmed by (i) 0.23 °C temperature differential between an array of sensors within the tents and (ii) statistically similar performance of a common check replicated multiple times in each tent. On average, a reduction in grain-filling duration by 3.33 days, kernel weight by 1.25% per °C, grain number by 2.36% per °C and yield by 3.58% per °C increase in night temperature was documented. HNT stress induced a significant reduction in starch concentration indicating disturbed carbon balance. The pilot field-based facility integrated with a robust cyber-physical system provides a timely breakthrough for evaluating HNT stress impact on large diversity panels to enhance HNT stress tolerance across field crops. The flexibility of the cyber-physical system and movement capabilities of the field-based infrastructure allows this methodology to be adaptable to different crops.


Asunto(s)
Producción de Cultivos , Productos Agrícolas , Monitoreo del Ambiente , Calidad de los Alimentos , Desarrollo de la Planta , Temperatura , Triticum/fisiología , Biomasa , Grano Comestible , Proteínas de Plantas , Estaciones del Año , Almidón , Estrés Fisiológico
6.
Plant Cell Environ ; 43(2): 448-462, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31702833

RESUMEN

In sorghum (Sorghum bicolor [L.] Moench), the impact of heat stress during flowering on seed set is known, but mechanisms that lead to tolerance are not known. A diverse set of sorghum genotypes was tested under controlled environment and field conditions to ascertain the impact of heat stress on time-of-day of flowering, pollen viability, and ovarian tissue. A highly conserved early morning flowering was observed, wherein >90% of spikelets completed flowering within 30 min after dawn, both in inbreds and hybrids. A strong quantitative impact of heat stress was recorded before pollination (reduced pollen viability) and post pollination (reduced pollen tube growth and linear decline in fertility). Although viable pollen tube did reach the micropylar region, 100% spikelet sterility was recorded under 40/22°C (day/night temperatures), even in the tolerant genotype Macia. Heat stress induced significant damage to the ovarian tissue near the micropylar region, leading to highly condensed cytoplasmic contents and disintegrated nucleolus and nucleus in the susceptible genotype RTx430. Whereas, relatively less damages to ovarian cell organelles were observed in the tolerant genotype Macia under heat stress. Integrating higher tolerance in female reproductive organ will help in effective utilization of the early morning flowering mechanism to enhance sorghum productivity under current and future hotter climate.


Asunto(s)
Fertilidad/fisiología , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Infertilidad , Sorghum/fisiología , Clima , Grano Comestible/fisiología , Genotipo , Magnoliopsida/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética , Polen/fisiología , Tubo Polínico/crecimiento & desarrollo , Polinización/fisiología , Reproducción/fisiología , Sorghum/genética , Temperatura
7.
Plant Methods ; 15: 41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044000

RESUMEN

BACKGROUND: Many agronomic traits have been bred into modern wheat varieties, but wheat (Triticum aestivum L.) continues to be vulnerable to heat stress, with high night-time temperature (HNT) stress shown to have large negative impact on yield and quality. Global mean temperature during the day is consistently warming with the minimum night temperature increasing at a much quicker pace. Currently, there is no system or method that allows crop scientists to impose HNT stress at key developmental stages on wheat or crops in general under field conditions, involving diverse genotypes and maintaining a dynamic temperature differential within the tents compared to the outside. RESULTS: Through implementation of a side roll up and a top ventilation system, heaters, and a custom cyber-physical system using a Raspberry Pi, the heat tents were able to consistently maintain an elevated temperature through the night to differentiate heat stress impact on different genotypes. When the tents were placed in their day-time setting they were able to maintain ambient day-time temperature without having to be removed and replaced on the plots. Data averaged from multiple sensors over three consecutive weeks resulted in a consistent but small temperature difference of 0.25 °C within the tents, indicating even distribution of heat. While targeting a temperature differential of 4 °C, the tents were able to maintain an average differential of 3.2 °C consistently throughout the night-time heat stress period, compared to the outside ambient conditions. The impact of HNT stress was confirmed through a statistically significant yield reduction in eleven of the twelve genotypes tested. The average yield under HNT stress was reduced by 20.3% compared to the controls, with the highest reduction being 41.4% and a lowest reduction of 6.9%. Recommendations for fine-tuning the system are provided. CONCLUSION: This methodology is easily accessible and can be widely utilized due to its flexibility and ease of construction. This system can be modified and improved based on some of the recommendations and has the potential to be used across other crops or plants as it is not reliant on access to any hardwired utilities. The method tested will help the crop community to quantify the impact of HNT stress, identify novel donors that induce tolerance to HNT and help the breeders develop crop varieties that are resilient to changing climate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...