Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(17): 9663-9674, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36124684

RESUMEN

Xeno-nucleic acids (XNAs) are synthetic genetic polymers with backbone structures composed of non-ribose or non-deoxyribose sugars. Phosphonomethylthreosyl nucleic acid (pTNA), a type of XNA that does not base pair with DNA or RNA, has been suggested as a possible genetic material for storing synthetic biology information in cells. A critical step in this process is the synthesis of XNA episomes using laboratory-evolved polymerases to copy DNA information into XNA. Here, we investigate the polymerase recognition of pTNA nucleotides using X-ray crystallography to capture the post-catalytic complex of engineered polymerases following the sequential addition of two pTNA nucleotides onto the 3'-end of a DNA primer. High-resolution crystal structures reveal that the polymerase mediates Watson-Crick base pairing between the extended pTNA adducts and the DNA template. Comparative analysis studies demonstrate that the sugar conformation and backbone position of pTNA are structurally more similar to threose nucleic acid than DNA even though pTNA and DNA share the same six-atom backbone repeat length. Collectively, these findings provide new insight into the structural determinants that guide the enzymatic synthesis of an orthogonal genetic polymer, and may lead to the discovery of new variants that function with enhanced activity.


Asunto(s)
Ácidos Nucleicos , ADN/química , ADN/genética , Cartilla de ADN , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Nucleótidos , Nucleotidiltransferasas/genética , Polímeros , ARN/química
2.
ACS Synth Biol ; 10(11): 3190-3199, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34739228

RESUMEN

Synthetic genetic polymers (xeno-nucleic acids, XNAs) have the potential to transition aptamers from laboratory tools to therapeutic agents, but additional functionality is needed to compete with antibodies. Here, we describe the evolution of a biologically stable artificial genetic system composed of α-l-threofuranosyl nucleic acid (TNA) that facilitates the production of backbone- and base-modified aptamers termed "threomers" that function as high quality protein capture reagents. Threomers were discovered against two prototypical protein targets implicated in human diseases through a combination of in vitro selection and next-generation sequencing using uracil nucleotides that are uniformly equipped with aromatic side chains commonly found in the paratope of antibody-antigen crystal structures. Kinetic measurements reveal that the side chain modifications are critical for generating threomers with slow off-rate binding kinetics. These findings expand the chemical space of evolvable non-natural genetic systems to include functional groups that enhance protein target binding by mimicking the structural properties of traditional antibodies.


Asunto(s)
Aptámeros de Nucleótidos/química , Ácidos Nucleicos/química , Polímeros/química , Tetrosas/química , Anticuerpos/química , Cinética , Proteínas/química
3.
J Am Chem Soc ; 143(42): 17761-17768, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34637287

RESUMEN

Expanding the chemical space of evolvable non-natural genetic polymers (XNAs) to include functional groups that enhance protein target binding affinity offers a promising route to therapeutic aptamers with high biological stability. Here we describe the chemical synthesis and polymerase recognition of 10 chemically diverse functional groups introduced at the C-5 position of α-l-threofuranosyl uridine nucleoside triphosphate (tUTP). We show that the set of tUTP substrates is universally recognized by the laboratory-evolved polymerase Kod-RSGA. Insights into the mechanism of TNA synthesis were obtained from a high-resolution X-ray crystal structure of the postcatalytic complex bound to the primer-template duplex. A structural analysis reveals a large cavity in the enzyme active site that can accommodate the side chain of C-5-modified tUTP substrates. Our findings expand the chemical space of evolvable nucleic acid systems by providing a synthetic route to artificial genetic polymers that are uniformly modified with diversity-enhancing functional groups.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Tetrosas , Uridina Trifosfato , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleósidos/química , Unión Proteica , Tetrosas/síntesis química , Tetrosas/química , Tetrosas/metabolismo , Thermococcus/enzimología , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/síntesis química , Uridina Trifosfato/metabolismo
4.
Nucleic Acids Res ; 49(20): 11438-11446, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34634814

RESUMEN

Functional nucleic acids lose activity when their sequence is prepared in the backbone architecture of a different genetic polymer. The only known exception to this rule is a subset of aptamers whose binding mechanism involves G-quadruplex formation. We refer to such examples as transliteration-a synthetic biology concept describing cases in which the phenotype of a nucleic acid molecule is retained when the genotype is written in a different genetic language. Here, we extend the concept of transliteration to include nucleic acid enzymes (XNAzymes) that mediate site-specific cleavage of an RNA substrate. We show that an in vitro selected 2'-fluoroarabino nucleic acid (FANA) enzyme retains catalytic activity when its sequence is prepared as α-l-threofuranosyl nucleic acid (TNA), and vice versa, a TNA enzyme that remains functional when its sequence is prepared as FANA. Structure probing with DMS supports the hypothesis that FANA and TNA enzymes having the same primary sequence can adopt similarly folded tertiary structures. These findings provide new insight into the sequence-structure-function paradigm governing biopolymer folding.


Asunto(s)
Enzimas/química , Ácidos Nucleicos/química , Biología Sintética
5.
Nat Commun ; 12(1): 2641, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976175

RESUMEN

The mechanism of DNA synthesis has been inferred from static structures, but the absence of temporal information raises longstanding questions about the order of events in one of life's most central processes. Here we follow the reaction pathway of a replicative DNA polymerase using time-resolved X-ray crystallography to elucidate the order and transition between intermediates. In contrast to the canonical model, the structural changes observed in the time-lapsed images reveal a catalytic cycle in which translocation precedes catalysis. The translocation step appears to follow a push-pull mechanism where the O-O1 loop of the finger subdomain acts as a pawl to facilitate unidirectional movement along the template with conserved tyrosine residues 714 and 719 functioning as tandem gatekeepers of DNA synthesis. The structures capture the precise order of critical events that may be a general feature of enzymatic catalysis among replicative DNA polymerases.


Asunto(s)
ADN Polimerasa I/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Genéticos , Conformación de Ácido Nucleico , Factores de Tiempo
6.
Q Rev Biophys ; 53: e8, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32715992

RESUMEN

DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN/genética , Ácidos Nucleicos/química , Ingeniería de Proteínas/métodos , Biología Sintética/métodos , Animales , Cristalografía por Rayos X , ADN/química , Escherichia coli/metabolismo , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Biblioteca de Péptidos , Filogenia , Polímeros/química , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Especificidad por Sustrato , Thermus thermophilus/metabolismo
7.
Nucleic Acids Res ; 47(13): 6973-6983, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31170294

RESUMEN

Replicative DNA polymerases are highly efficient enzymes that maintain stringent geometric control over shape and orientation of the template and incoming nucleoside triphosphate. In a surprising twist to this paradigm, a naturally occurring bacterial DNA polymerase I member isolated from Geobacillus stearothermophilus (Bst) exhibits an innate ability to reverse transcribe RNA and other synthetic congeners (XNAs) into DNA. This observation raises the interesting question of how a replicative DNA polymerase is able to recognize templates of diverse chemical composition. Here, we present crystal structures of natural Bst DNA polymerase that capture the post-translocated product of DNA synthesis on templates composed entirely of 2'-deoxy-2'-fluoro-ß-d-arabino nucleic acid (FANA) and α-l-threofuranosyl nucleic acid (TNA). Analysis of the enzyme active site reveals the importance of structural plasticity as a possible mechanism for XNA-dependent DNA synthesis and provides insights into the construction of variants with improved activity.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa I/química , Geobacillus stearothermophilus/enzimología , ADN Polimerasa Dirigida por ARN/química , Arabinonucleotidos/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa I/aislamiento & purificación , ADN Polimerasa I/metabolismo , ADN Bacteriano/metabolismo , Modelos Moleculares , Hibridación de Ácido Nucleico , Nucleósidos/metabolismo , Unión Proteica , Conformación Proteica , ADN Polimerasa Dirigida por ARN/aislamiento & purificación , ADN Polimerasa Dirigida por ARN/metabolismo , Relación Estructura-Actividad , Moldes Genéticos
8.
Elife ; 72018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30338759

RESUMEN

High resolution crystal structures of DNA polymerase intermediates are needed to study the mechanism of DNA synthesis in cells. Here we report five crystal structures of DNA polymerase I that capture new conformations for the polymerase translocation and nucleotide pre-insertion steps in the DNA synthesis pathway. We suggest that these new structures, along with previously solved structures, highlight the dynamic nature of the finger subdomain in the enzyme active site.


Asunto(s)
ADN Polimerasa I/química , ADN/biosíntesis , Escherichia coli/enzimología , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , Conformación Proteica
9.
J Org Chem ; 83(16): 8840-8850, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30011988

RESUMEN

α-l-Threofuranosyl nucleic acid (TNA) is an artificial genetic polymer in which the natural five-carbon ribose sugar found in RNA has been replaced with an unnatural four-carbon threose sugar. Despite a different sugar-phosphate backbone, TNA is capable of forming stable, antiparallel Watson-Crick duplex structures with itself and with complementary strands of DNA and RNA. This property of intersystem base pairing, coupled with the chemical simplicity of threose relative to ribose, provides support for TNA as a candidate RNA progenitor in the evolution of life. In an effort to evaluate the functional properties of TNA by in vitro evolution, engineered polymerases have been developed that are capable of copying information back and forth between DNA and TNA. However, the current generation of TNA polymerases function with reduced activity relative to their natural counterparts, which limits the evaluation of TNA as a primordial genetic material. Here, we describe the chemical synthesis and polymerase recognition of 2'-deoxy-α-l-threofuranosyl nucleoside 3'-triphosphates (dtNTPs) as chain-terminating reagents in a polymerase-mediated TNA synthesis reaction. The synthesis of dtNTPs should make it possible to investigate the mechanism of TNA synthesis by X-ray crystallography by trapping the polymerase in the catalytically active conformation.


Asunto(s)
Nucleósidos/síntesis química , Secuencia de Bases , Conformación de Carbohidratos , Técnicas de Química Sintética , Modelos Moleculares , Nucleósidos/química
10.
Nat Commun ; 8(1): 1810, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180809

RESUMEN

Darwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which α-(L)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI. Structural comparison of the apo, binary, open and closed ternary, and translocated product detail an ensemble of interactions and conformational changes required to promote TNA synthesis. Close inspection of the active site in the closed ternary structure reveals a sub-optimal binding geometry that explains the slow rate of catalysis. This key piece of information, which is missing for all naturally occurring archaeal DNA polymerases, provides a framework for engineering new TNA polymerase variants.


Asunto(s)
Evolución Biológica , ADN Polimerasa Dirigida por ADN/química , Ácidos Nucleicos/biosíntesis , Nucleósidos/metabolismo , Ingeniería de Proteínas , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Nucleósidos/química
11.
Cell Host Microbe ; 19(6): 814-25, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27281571

RESUMEN

Neutrophils hinder bacterial growth by a variety of antimicrobial mechanisms, including the production of reactive oxygen species and the secretion of proteins that sequester nutrients essential to microbes. A major player in this process is calprotectin, a host protein that exerts antimicrobial activity by chelating zinc and manganese. Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized metal transporters to evade calprotectin sequestration of manganese, allowing the bacteria to outcompete commensals and thrive in the inflamed gut. The pathogen's ability to acquire manganese in turn promotes function of SodA and KatN, enzymes that use the metal as a cofactor to detoxify reactive oxygen species. This manganese-dependent SodA activity allows the bacteria to evade neutrophil killing mediated by calprotectin and reactive oxygen species. Thus, manganese acquisition enables S. Typhimurium to overcome host antimicrobial defenses and support its competitive growth in the intestine.


Asunto(s)
Gastroenteritis/microbiología , Intestinos/microbiología , Complejo de Antígeno L1 de Leucocito/farmacología , Manganeso/metabolismo , Estrés Oxidativo/fisiología , Salmonella typhimurium/fisiología , Animales , Antibacterianos/farmacología , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Quelantes/farmacología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/fisiología , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/enzimología , Salmonella typhimurium/crecimiento & desarrollo , Simbiosis , Zinc/metabolismo
12.
Chem Biol ; 22(8): 1098-107, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26278184

RESUMEN

Mycobacterium tuberculosis mycobacterial membrane protein large (MmpL) proteins are important in substrate transport across the inner membrane. Here, we show that MmpL proteins are classified into two phylogenetic clusters, where MmpL cluster II contains three soluble domains (D1, D2, and D3) and has two full-length members, MmpL3 and MmpL11. Significantly, MmpL3 is currently the most druggable M. tuberculosis target. We have solved the 2.4-Å MmpL11-D2 crystal structure, revealing structural homology to periplasmic porter subdomains of RND (multidrug) transporters. The resulting predicted cluster II MmpL membrane topology has D1 and D2 residing, and possibly interacting, within the periplasm. Crosslinking and biolayer interferometry experiments confirm that cluster II D1 and D2 bind with weak affinities, and guided D1-D2 heterodimeric model assemblies. The predicted full-length MmpL3 and MmpL11 structural models reveal key substrate binding and transport residues, and may serve as templates to set the stage for in silico anti-tuberculosis drug development.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Periplasma/química , Periplasma/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
13.
Curr Opin Chem Biol ; 19: 34-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24780277

RESUMEN

Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within the bacterial cytosol to liberate iron. The pathways for heme transport into the bacterial cytosol are divergent, harboring non-homologous protein sequences, novel structures, varying numbers of proteins, and different mechanisms. Congruously, the breakdown of heme within the bacterial cytosol by sequence-divergent proteins releases iron and distinct degradation products.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Hemo/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1074-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699651

RESUMEN

Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully understand the function of the acyl-group binding pocket in substrate specificity.


Asunto(s)
Coenzima A Transferasas/química , Yersinia pestis/enzimología , Acilcoenzima A/metabolismo , Dominio Catalítico , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Modelos Moleculares , Mutación , Estructura Cuaternaria de Proteína
15.
J Inorg Biochem ; 133: 118-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24314844

RESUMEN

Mycobacterium tuberculosis, the pathogen that causes tuberculosis, has evolved sophisticated mechanisms for evading assault by the human host. This review focuses on M. tuberculosis regulatory metalloproteins that are sensitive to exogenous stresses attributed to changes in the levels of gaseous molecules (i.e., molecular oxygen, carbon monoxide and nitric oxide) to elicit an intracellular response. In particular, we highlight recent developments on the subfamily of Whi proteins, redox sensing WhiB-like proteins that contain iron-sulfur clusters, sigma factors and their cognate anti-sigma factors of which some are zinc-regulated, and the dormancy survival regulon DosS/DosT-DosR heme sensory system. Mounting experimental evidence suggests that these systems contribute to a highly complex and interrelated regulatory network that controls M. tuberculosis biology. This review concludes with a discussion of strategies that M. tuberculosis has developed to maintain redox homeostasis, including mechanisms to regulate endogenous nitric oxide and carbon monoxide levels.


Asunto(s)
Hipoxia/metabolismo , Metaloproteínas/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Monóxido de Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Humanos , Metaloproteínas/química , Metaloproteínas/genética , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Tuberculosis/metabolismo
16.
BMC Struct Biol ; 13: 23, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24134223

RESUMEN

BACKGROUND: Bacterial Disulfide bond forming (Dsb) proteins facilitate proper folding and disulfide bond formation of periplasmic and secreted proteins. Previously, we have shown that Mycobacterium tuberculosis Mt-DsbE and Mt-DsbF aid in vitro oxidative folding of proteins. The M. tuberculosis proteome contains another predicted membrane-tethered Dsb protein, Mt-DsbA, which is encoded by an essential gene. RESULTS: Herein, we present structural and biochemical analyses of Mt-DsbA. The X-ray crystal structure of Mt-DsbA reveals a two-domain structure, comprising a canonical thioredoxin domain with the conserved CXXC active site cysteines in their reduced form, and an inserted α-helical domain containing a structural disulfide bond. The overall fold of Mt-DsbA resembles that of other DsbA-like proteins and not Mt-DsbE or Mt-DsbF. Biochemical characterization demonstrates that, unlike Mt-DsbE and Mt-DsbF, Mt-DsbA is unable to oxidatively fold reduced, denatured hirudin. Moreover, on the substrates tested in this study, Mt-DsbA has disulfide bond isomerase activity contrary to Mt-DsbE and Mt-DsbF. CONCLUSION: These results suggest that Mt-DsbA acts upon a distinct subset of substrates as compared to Mt-DsbE and Mt-DsbF. One could speculate that Mt-DsbE and Mt-DsbF are functionally redundant whereas Mt-DsbA is not, offering an explanation for the essentiality of Mt-DsbA in M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/química , Cisteína/química , Isomerasas/química , Isomerasas/metabolismo , Mycobacterium tuberculosis/química , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Genes Bacterianos , Isomerasas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/genética , Replegamiento Proteico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteoma , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
17.
J Am Chem Soc ; 135(33): 12460-7, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23927812

RESUMEN

Amyloid oligomers play a central role in Alzheimer's and other amyloid diseases, and yet the structures of these heterogeneous and unstable species are not well understood. To better understand the structures of oligomers formed by amyloid-ß peptide (Aß), we have incorporated a key amyloidogenic region of Aß into a macrocyclic peptide that stabilizes oligomers and facilitates structural elucidation by X-ray crystallography. This paper reports the crystallographic structures of oligomers and oligomer assemblies formed by a macrocycle containing the Aß(15-23) nonapeptide. The macrocycle forms hydrogen-bonded ß-sheets that assemble into cruciform tetramers consisting of eight ß-strands in a two-layered assembly. Three of the cruciform tetramers assemble into a triangular dodecamer. These oligomers further assemble in the lattice to form hexagonal pores. Molecular modeling studies suggest that the natural Aß peptide can form similar oligomers and oligomer assemblies. The crystallographic and molecular modeling studies suggest the potential for interaction of the oligomers with cell membranes and provide insights into the role of oligomers in amyloid diseases.


Asunto(s)
Péptidos beta-Amiloides/química , Multimerización de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Estructura Secundaria de Proteína
18.
Future Med Chem ; 5(12): 1391-403, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23919550

RESUMEN

Mycobacterium tuberculosis (Mtb) acquires non-heme iron through salicylate-derived siderophores termed mycobactins whereas heme iron is obtained through a cascade of heme uptake proteins. Three proteins are proposed to mediate Mtb heme iron uptake, a secreted heme transporter (Rv0203), and MmpL3 and MmpL11, which are potential transmembrane heme transfer proteins. Furthermore, MhuD, a cytoplasmic heme-degrading enzyme, has been identified. Rv0203, MmpL3 and MmpL11 are mycobacteria-specific proteins, making them excellent drug targets. Importantly, MmpL3, a necessary protein, has also been implicated in trehalose monomycolate export. Recent drug-discovery efforts revealed that MmpL3 is the target of several compounds with antimycobacterial activity. Inhibition of the Mtb heme uptake pathway has yet to be explored. We propose that inhibitor design could focus on heme analogs, with the goal of blocking specific steps of this pathway. In addition, heme uptake could be hijacked as a method of importing drugs into the mycobacterial cytosol.


Asunto(s)
Hemo/metabolismo , Mycobacterium tuberculosis/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Estructura Terciaria de Proteína
19.
J Biol Chem ; 288(30): 21714-28, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23760277

RESUMEN

Mycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival. M. tuberculosis has two iron uptake mechanisms, one that utilizes non-heme iron and another that taps into the vast host heme-iron pool. To date, proteins known to be involved in mycobacterial heme uptake are Rv0203, MmpL3, and MmpL11. Whereas Rv0203 transports heme across the bacterial periplasm or scavenges heme from host heme proteins, MmpL3 and MmpL11 are thought to transport heme across the membrane. In this work, we characterize the heme-binding properties of the predicted extracellular soluble E1 domains of both MmpL3 and MmpL11 utilizing absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopic methods. Furthermore, we demonstrate that Rv0203 transfers heme to both MmpL3-E1 and MmpL11-E1 domains at a rate faster than passive heme dissociation from Rv0203. This work elucidates a key step in the mycobacterial uptake of heme, and it may be useful in the development of anti-tuberculosis drugs targeting this pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión/genética , Transporte Biológico , Proteínas Portadoras/genética , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Hemoproteínas/metabolismo , Humanos , Cinética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Metaloporfirinas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Unión Proteica , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Tuberculosis/microbiología
20.
Artículo en Inglés | MEDLINE | ID: mdl-22232161

RESUMEN

Yersinia pestis remains a threat, with outbreaks of plague occurring in rural areas and its emergence as a weapon of bioterrorism; thus, an improved understanding of its various pathogenicity pathways is warranted. The rip (required for intracellular proliferation) virulence operon is required for Y. pestis survival in interferon-γ-treated macrophages and has been implicated in lowering macrophage-produced nitric oxide levels. RipC, one of three gene products from the rip operon, is annotated as a citrate lyase ß subunit. Furthermore, the Y. pestis genome lacks genes that encode citrate lyase α and γ subunits, suggesting a unique functional role of RipC in the Y. pestis rip-mediated survival pathway. Here, the 2.45 Å resolution crystal structure of RipC revealed a homotrimer in which each monomer consists of a (ß/α)(8) TIM-barrel fold. Furthermore, the trimeric state was confirmed in solution by size-exclusion chromatography. Through sequence and structure comparisons with homologous proteins, it is proposed that RipC is a putative CoA- or CoA-derivative binding protein.


Asunto(s)
Complejos Multienzimáticos/química , Oxo-Ácido-Liasas/química , Yersinia pestis/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Operón , Oxo-Ácido-Liasas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Alineación de Secuencia , Virulencia , Yersinia pestis/genética , Yersinia pestis/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA