Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 24(3): 376-389.e8, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661959

RESUMEN

The ability to generate T cells from pluripotent stem cells (PSCs) has the potential to transform autologous T cell immunotherapy by facilitating universal, off-the-shelf cell products. However, differentiation of human PSCs into mature, conventional T cells has been challenging with existing methods. We report that a continuous 3D organoid system induced an orderly sequence of commitment and differentiation from PSC-derived embryonic mesoderm through hematopoietic specification and efficient terminal differentiation to naive CD3+CD8αß+ and CD3+CD4+ conventional T cells with a diverse T cell receptor (TCR) repertoire. Introduction of an MHC class I-restricted TCR in PSCs produced naive, antigen-specific CD8αß+ T cells that lacked endogenous TCR expression and showed anti-tumor efficacy in vitro and in vivo. Functional assays and RNA sequencing aligned PSC-derived T cells with primary naive CD8+ T cells. The PSC-artificial thymic organoid (ATO) system presented here is an efficient platform for generating functional, mature T cells from human PSCs.


Asunto(s)
Diferenciación Celular , Organoides/citología , Células Madre Pluripotentes/citología , Linfocitos T/citología , Animales , Células Cultivadas , Humanos , Células K562 , Ratones , Ratones Endogámicos NOD , Organoides/inmunología , Células Madre Pluripotentes/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología
2.
Stem Cell Reports ; 10(2): 436-446, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29307583

RESUMEN

Various mesenchymal cell types have been identified as critical components of the hematopoietic stem/progenitor cell (HSPC) niche. Although several groups have described the generation of mesenchyme from human pluripotent stem cells (hPSCs), the capacity of such cells to support hematopoiesis has not been reported. Here, we demonstrate that distinct mesenchymal subpopulations co-emerge from mesoderm during hPSC differentiation. Despite co-expression of common mesenchymal markers (CD73, CD105, CD90, and PDGFRß), a subset of cells defined as CD146hiCD73hi expressed genes associated with the HSPC niche and supported the maintenance of functional HSPCs ex vivo, while CD146loCD73lo cells supported differentiation. Stromal support of HSPCs was contact dependent and mediated in part through high JAG1 expression and low WNT signaling. Molecular profiling revealed significant transcriptional similarity between hPSC-derived CD146++ and primary human CD146++ perivascular cells. The derivation of functionally diverse types of mesenchyme from hPSCs opens potential avenues to model the HSPC niche and develop PSC-based therapies.


Asunto(s)
Diferenciación Celular/genética , Células Madre Mesenquimatosas/citología , Mesodermo/citología , Células Madre Pluripotentes/citología , Antígeno CD146/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Células Madre Pluripotentes/metabolismo , Nicho de Células Madre/genética , Vía de Señalización Wnt/genética
3.
Blood Adv ; 1(27): 2799-2816, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29296932

RESUMEN

CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.

4.
Stem Cells ; 34(5): 1239-50, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26934332

RESUMEN

Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Stem Cells 2016;34:1239-1250.


Asunto(s)
Diferenciación Celular , Técnicas Genéticas , Mesodermo/citología , Células Madre Multipotentes/citología , Animales , Antígenos CD/metabolismo , Línea Celular , Linaje de la Célula , Separación Celular , Células Clonales , Citometría de Flujo , Humanos , Lentivirus/metabolismo , Ratones
5.
Stem Cells ; 32(6): 1503-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24677652

RESUMEN

Unlimited self renewal capacity and differentiation potential make human pluripotent stem cells (PSC) a promising source for the ex vivo manufacture of red blood cells (RBCs) for safe transfusion. Current methods to induce erythropoiesis from PSC suffer from low yields of RBCs, most of which are immature and contain embryonic and fetal rather than adult hemoglobins. We have previously shown that homodimerization of the intracellular component of MPL (ic-MPL) induces erythropoiesis from human cord blood progenitors. The goal of this study was to investigate the potential of ic-MPL dimerization to induce erythropoiesis from human embryonic stem cells (hESCs) and to identify the signaling pathways activated by this strategy. We present here the evidence that ic-MPL dimerization induces erythropoietin (EPO)-independent erythroid differentiation from hESC by inducing the generation of erythroid progenitors and by promoting more efficient erythroid maturation with increased RBC enucleation as well as increased gamma:epsilon globin ratio and production of beta-globin protein. ic-MPL dimerization is significantly more potent than EPO in inducing erythropoiesis, and its effect is additive to EPO. Signaling studies show that dimerization of ic-MPL, unlike stimulation of the wild type MPL receptor, activates AKT in the absence of JAK2/STAT5 signaling. AKT activation upregulates GATA-1 and FOXO3 transcriptional pathways with resulting inhibition of apoptosis, modulation of cell cycle, and enhanced maturation of erythroid cells. These findings open up potential new targets for the generation of therapeutically relevant RBC products from hPSC.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Eritropoyesis , Eritropoyetina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ciclo Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Humanos , Megacariocitos/citología , Megacariocitos/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores de Trombopoyetina/química , Receptores de Trombopoyetina/metabolismo
6.
Stem Cell Rev Rep ; 10(2): 230-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24477620

RESUMEN

Human pluripotent stem cells (PSCs) are critical in vitro tools for understanding mechanisms that regulate lineage differentiation in the human embryo as well as a potentially unlimited supply of stem cells for regenerative medicine. Pluripotent human and mouse embryonic stem cells (ESCs) derived from the inner cell mass of blastocysts share a similar transcription factor network to maintain pluripotency and self-renewal, yet there are considerable molecular differences reflecting the diverse environments in which mouse and human ESCs are derived. In the current study we evaluated the role of Protein arginine methyltransferase 5 (PRMT5) in human ESC (hESC) self-renewal and pluripotency given its critical role in safeguarding mouse ESC pluripotency. Unlike the mouse, we discovered that PRMT5 has no role in hESC pluripotency. Using microarray analysis we discovered that a significant depletion in PRMT5 RNA and protein from hESCs changed the expression of only 78 genes, with the majority being repressed. Functionally, we discovered that depletion of PRMT5 had no effect on expression of OCT4, NANOG or SOX2, and did not prevent teratoma formation. Instead, we show that PRMT5 functions in hESCs to regulate proliferation in the self-renewing state by regulating the fraction of cells in Gap 1 (G1) of the cell cycle and increasing expression of the G1 cell cycle inhibitor P57. Taken together our data unveils a distinct role for PRMT5 in hESCs and identifies P57 as new target.


Asunto(s)
Proliferación Celular , Células Madre Embrionarias/fisiología , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Madre Embrionarias/trasplante , Puntos de Control de la Fase G1 del Ciclo Celular , Expresión Génica , Humanos , Ratones , Ratones SCID , Teratoma/patología
7.
Blood ; 121(15): 2891-901, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23412095

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) emerge and develop adjacent to blood vessel walls in the yolk sac, aorta-gonad-mesonephros region, embryonic liver, and fetal bone marrow. In adult mouse bone marrow, perivascular cells shape a "niche" for HSPCs. Mesenchymal stem/stromal cells (MSCs), which support hematopoiesis in culture, are themselves derived in part from perivascular cells. In order to define their direct role in hematopoiesis, we tested the ability of purified human CD146(+) perivascular cells, as compared with unfractionated MSCs and CD146(-) cells, to sustain human HSPCs in coculture. CD146(+) perivascular cells support the long-term persistence, through cell-to-cell contact and at least partly via Notch activation, of human myelolymphoid HSPCs able to engraft primary and secondary immunodeficient mice. Conversely, unfractionated MSCs and CD146(-) cells induce differentiation and compromise ex vivo maintenance of HSPCs. Moreover, CD146(+) perivascular cells express, natively and in culture, molecular markers of the vascular hematopoietic niche. Unexpectedly, this dramatic, previously undocumented ability to support hematopoietic stem cells is present in CD146(+) perivascular cells extracted from the nonhematopoietic adipose tissue.


Asunto(s)
Vasos Sanguíneos/fisiología , Antígeno CD146/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Adulto , Animales , Antígenos CD34/metabolismo , Vasos Sanguíneos/citología , Western Blotting , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Comunicación Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Técnicas de Cocultivo , Sangre Fetal/citología , Sangre Fetal/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Receptores Notch/genética , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA