Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 14: 1297637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074322

RESUMEN

Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.

2.
J Invest Dermatol ; 142(6): 1670-1681.e12, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34740582

RESUMEN

Nicotinamide (NAM), a NAM adenine dinucleotide precursor, is known for its benefits to skin health. Under standard culture conditions, NAM delays the differentiation and enhances the proliferation of human primary keratinocytes, leading to the maintenance of stem cells. In this study, we investigated the effects of NAM on photoaging in two-dimensional human primary keratinocyte cultures and three-dimensional organotypic epidermal models. In both models, we found that UVB irradiation and hydrogen peroxide induced human primary keratinocyte premature terminal differentiation and senescence. In three-dimensional organotypics, the phenotype was characterized by a thickening of the granular layer expressing filaggrin and loricrin, but thinning of the epidermis overall. NAM limited premature differentiation and ameliorated senescence, as evidenced by the maintenance of lamin B1 levels in both models, with decreased lipofuscin staining and reduced IL-6/IL-8 secretion in three-dimensional models, compared to those in UVB-only controls. In addition, DNA damage observed after irradiation was accompanied by a decline in energy metabolism, whereas both effects were partially prevented by NAM. Our data thus highlight the protective effects of NAM against photoaging and oxidative stress in the human epidermis and pinpoint DNA repair and energy metabolism as crucial underlying mechanisms.


Asunto(s)
Envejecimiento de la Piel , Humanos , Queratinocitos/metabolismo , Niacinamida/farmacología , Estrés Oxidativo , Rayos Ultravioleta/efectos adversos
3.
J Invest Dermatol ; 139(8): 1638-1647.e3, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30776433

RESUMEN

Nicotinamide (NAM) is the main precursor of nicotinamide adenine dinucleotide (NAD+), a coenzyme essential for DNA repair, glycolysis, and oxidative phosphorylation. NAM has anti-aging activity on human skin, but the underlying mechanisms of action are unclear. Using 3-dimensional organotypic skin models, we show that NAM inhibits differentiation of the upper epidermal layers and maintains proliferation in the basal layer. In 2-dimensional culture, NAM reduces the expression of early and late epidermal differentiation markers and increases the proliferative capacity of human primary keratinocytes. This effect is characterized by elevated clonogenicity and an increased proportion of human primary keratinocyte stem cell (holoclones) compared to controls. By contrast, preventing the conversion of NAM to NAD+ using FK866 leads to premature human primary keratinocyte differentiation and senescence, together with a dramatic drop in glycolysis and cellular adenosine triphosphate levels while oxidative phosphorylation is moderately affected. All these effects are rescued by addition of NAM, known to compete with FK866, which suggests that conversion to NAD+ is part of the mechanistic response. These data provide insights into the control of differentiation, proliferation, and senescence by NAM and NAD+ in skin. They may lead to new therapeutic advances for skin conditions characterized by dysregulated epidermal homeostasis and premature skin aging, such as photoaging.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Queratinocitos/metabolismo , Niacinamida/farmacología , Envejecimiento de la Piel/fisiología , Células 3T3 , Acrilamidas , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Femenino , Voluntarios Sanos , Humanos , Queratinocitos/efectos de los fármacos , Ratones , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas , Cultivo Primario de Células/métodos , Piel/citología , Piel/metabolismo , Envejecimiento de la Piel/efectos de la radiación , Células Madre/efectos de los fármacos , Células Madre/fisiología
4.
EBioMedicine ; 16: 63-75, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28119061

RESUMEN

While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis.


Asunto(s)
Movimiento Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteínas de Homeodominio/genética , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Factores de Transcripción NFI/genética , Factores del Dominio POU/genética , Animales , Western Blotting , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Noqueados , Factor de Transcripción Asociado a Microftalmía/metabolismo , Microscopía Fluorescente , Factores de Transcripción NFI/metabolismo , Invasividad Neoplásica , Factores del Dominio POU/metabolismo , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA