Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(49): e2306655, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37670609

RESUMEN

A bulk-heterojunction (BHJ) blend is commonly used as the photoactive layer in organic photodetectors (OPDs) to utilize the donor (D)/acceptor (A) interfacial energetic offset for exciton dissociation. However, this strategy often complicates optimization procedures, raising serious concerns over device processability, reproducibility, and stability. Herein, highly efficient OPDs fabricated with single-component organic semiconductors are demonstrated via solution-processing. The non-fullerene acceptors (NFAs) with strong intrinsic D/A character are used as the photoactive layer, where the emissive intermolecular charge transfer excitonic (CTE) states are formed within <1 ps, and efficient photocurrent generation is achieved via strong quenching of these CTE states by reverse bias. Y6 and IT-4F-based OPDs show excellent OPD performances, low dark current density (≈10-9 A cm-2 ), high responsivity (≥0.15 A W-1 ), high specific detectivity (>1012 Jones), and fast photo-response time (<10 µs), comparable to the state-of-the-art BHJ OPDs. Together with strong CTE state quenching by electric field, these excellent OPD performances are also attributed to the high quadrupole moments of NFA molecules, which can lead to large interfacial energetic offset for efficient CTE dissociation. This work opens a new way to realize efficient OPDs using single-component systems via solution-processing and provides important molecular design rules.

2.
Nat Commun ; 14(1): 1870, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015916

RESUMEN

The non-fullerene acceptors (NFAs) employed in state-of-art organic photovoltaics (OPVs) often exhibit strong quadrupole moments which can strongly impact on material energetics. Herein, we show that changing the orientation of Y6, a prototypical NFA, from face-on to more edge-on by using different processing solvents causes a significant energetic shift of up to 210 meV. The impact of this energetic shift on OPV performance is investigated in both bilayer and bulk-heterojunction (BHJ) devices with PM6 polymer donor. The device electronic bandgap and the rate of non-geminate recombination are found to depend on the Y6 orientation in both bilayer and BHJ devices, attributed to the quadrupole moment-induced band bending. Analogous energetic shifts are also observed in other common polymer/NFA blends, which correlates well with NFA quadrupole moments. This work demonstrates the key impact of NFA quadruple moments and molecular orientation on material energetics and thereby on the efficiency of high-performance OPVs.

3.
J Phys Chem C Nanomater Interfaces ; 126(5): 2708-2719, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35573707

RESUMEN

The bimolecular recombination characteristics of conjugated polymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-yl thiazolo 5,4-d thiazole)-2,5diyl] (PDTSiTTz) blended with the fullerene series PC60BM, ICMA, ICBA, and ICTA have been investigated using microsecond and femtosecond transient absorption spectroscopy, in conjunction with electroluminescence measurements and ambient photoemission spectroscopy. The non-Langevin polymer PDTSiTTz allows an inspection of intrinsic bimolecular recombination rates uninhibited by diffusion, while the low oscillator strengths of fullerenes allow polymer features to dominate, and we compare our results to those of the well-known polymer Si-PCPDTBT. Using µs-TAS, we have shown that the trap-limited decay dynamics of the PDTSiTTz polaron becomes progressively slower across the fullerene series, while those of Si-PCPDTBT are invariant. Electroluminescence measurements showed an unusual double peak in pristine PDTSiTTz, attributed to a low energy intragap charge transfer state, likely interchain in nature. Furthermore, while the pristine PDTSiTTz showed a broad, low-intensity density of states, the ICBA and ICTA blends presented a virtually identical DOS to Si-PCPDTBT and its blends. This has been attributed to a shift from a delocalized, interchain highest occupied molecular orbital (HOMO) in the pristine material to a dithienosilole-centered HOMO in the blends, likely a result of the bulky fullerenes increasing interchain separation. This HOMO localization had a side effect of progressively shifting the polymer HOMO to shallower energies, which was correlated with the observed decrease in bimolecular recombination rate and increased "trap" depth. However, since the density of tail states remained the same, this suggests that the traditional viewpoint of "trapping" being dominated by tail states may not encompass the full picture and that the breadth of the DOS may also have a strong influence on bimolecular recombination.

4.
ACS Energy Lett ; 7(2): 560-568, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35434365

RESUMEN

PEDOT: PSS is widely used as a hole transport layer (HTL) in perovskite solar cells (PSCs) due to its facile processability, industrial scalability, and commercialization potential. However, PSCs utilizing PEDOT:PSS suffer from strong recombination losses compared to other organic HTLs. This results in lower open-circuit voltage (V OC) and power conversion efficiency (PCE). Most studies focus on doping PEDOT:PSS to improve charge extraction, but it has been suggested that a high doping level can cause strong recombination losses. Herein, we systematically dedope PEDOT:PSS with aqueous NaOH, raising its Fermi level by up to 500 meV, and optimize its layer thickness in p-i-n devices. A significant reduction of recombination losses at the dedoped PEDOT:PSS/perovskite interface is evidenced by a longer photoluminescence lifetime and higher magnitude of surface photovoltage, leading to an increased device V OC, fill factor, and PCE. These results provide insights into the relationship between doping level of HTLs and interfacial charge carrier recombination losses.

5.
Nat Commun ; 11(1): 4617, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934236

RESUMEN

Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control.

6.
Nanoscale ; 12(7): 4751, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32037432

RESUMEN

Correction for 'Patterned liquid metal contacts for high density, stick-and-peel 2D material device arrays' by Yen-Lin Chen et al., Nanoscale, 2018, 10, 14510-14515.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...