Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Nat Med ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745010

RESUMEN

A leading explanation for translational failure in neurodegenerative disease is that new drugs are evaluated late in the disease course when clinical features have become irreversible. Here, to address this gap, we cognitively profiled 21,051 people aged 17-85 years as part of the Genes and Cognition cohort within the National Institute for Health and Care Research BioResource across England. We describe the cohort, present cognitive trajectories and show the potential utility. Surprisingly, when studied at scale, the APOE genotype had negligible impact on cognitive performance. Different cognitive domains had distinct genetic architectures, with one indicating brain region-specific activation of microglia and another with glycogen metabolism. Thus, the molecular and cellular mechanisms underpinning cognition are distinct from dementia risk loci, presenting different targets to slow down age-related cognitive decline. Participants can now be recalled stratified by genotype and cognitive phenotype for natural history and interventional studies of neurodegenerative and other disorders.

2.
J Neuromuscul Dis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38759022

RESUMEN

Background: The genetic diagnosis of mitochondrial disorders is complicated by its genetic and phenotypic complexity. Next generation sequencing techniques have much improved the diagnostic yield for these conditions. A cohort of individuals with multiple respiratory chain deficiencies, reported in the literature 10 years ago, had a diagnostic rate of 60% by whole exome sequencing (WES) but 40% remained undiagnosed. Objective: We aimed to identify a genetic diagnosis by reanalysis of the WES data for the undiagnosed arm of this 10-year-old cohort of patients with suspected mitochondrial disorders. Methods: The WES data was transferred and processed by the RD-Connect Genome-Phenome Analysis Platform (GPAP) using their standardized pipeline. Variant prioritisation was carried out on the RD-Connect GPAP. Results: Singleton WES data from 14 individuals was reanalysed. We identified a possible or likely genetic diagnosis in 8 patients (8/14, 57%). The variants identified were in a combination of mitochondrial DNA (n = 1, MT-TN), nuclear encoded mitochondrial genes (n = 2, PDHA1, and SUCLA2) and nuclear genes associated with nonmitochondrial disorders (n = 5, PNPLA2, CDC40, NBAS and SLC7A7). Variants in both the NBAS and CDC40 genes were established as disease causing after the original cohort was published. We increased the diagnostic yield for the original cohort by 15% without generating any further genomic data. CONCLUSIONS: In the era of multiomics we highlight that reanalysis of existing WES data is a valid tool for generating additional diagnosis in patients with suspected mitochondrial disease, particularly when more time has passed to allow for new bioinformatic pipelines to emerge, for the development of new tools in variant interpretation aiding in reclassification of variants and the expansion of scientific knowledge on additional genes.

4.
Brain ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38574200

RESUMEN

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations leading to mitochondrial dysfunction are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E-variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.

5.
Ann Clin Transl Neurol ; 11(5): 1359-1364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561955

RESUMEN

Neuroferritinopathy is a disorder of neurodegeneration with brain iron accumulation that has no proven disease-modifying treatments. Clinical trials require biomarkers of iron deposition. We examined brain iron accumulation in one presymptomatic FTL mutation carrier, two individuals with neuroferritinopathy and one healthy control using ultra-high-field 7T MRI. There was increased magnetic susceptibility, suggestive of iron deposition, in superficial and deep gray matter in both presymptomatic and symptomatic neuroferritinopathy. Cavitation of the putamen and globus pallidus increased with disease stage and at follow up. The widespread brain iron deposition in presymptomatic and early disease provides an opportunity for monitoring disease-modifying intervention.


Asunto(s)
Trastornos del Metabolismo del Hierro , Hierro , Imagen por Resonancia Magnética , Distrofias Neuroaxonales , Humanos , Distrofias Neuroaxonales/diagnóstico por imagen , Distrofias Neuroaxonales/genética , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Trastornos del Metabolismo del Hierro/diagnóstico por imagen , Trastornos del Metabolismo del Hierro/metabolismo , Trastornos del Metabolismo del Hierro/genética , Hierro/metabolismo , Adulto , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Persona de Mediana Edad , Apoferritinas/metabolismo , Apoferritinas/genética
6.
Cell Metab ; 36(1): 5-7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171338

RESUMEN

There is emerging evidence that mitochondria can move between cells, particularly from immune cells into cancers. Recent work from Zhang et al. in Cancer Cell employs single-cell RNA- and mitochondrial DNA-sequencing in co-culture experiments and patient tumor samples to detect mitochondrial transfer. However, the mechanisms, scale, and implications remain uncertain.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Mitocondrias/genética , ADN Mitocondrial/genética , Técnicas de Cocultivo
7.
Neuropathology ; 44(2): 109-114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37438874

RESUMEN

We present a comprehensive characterization of clinical, neuropathological, and multisystem features of a man with genetically confirmed McLeod neuroacanthocytosis syndrome, including video and autopsy findings. A 61-year-old man presented with a movement disorder and behavioral change. Examination showed dystonic choreiform movements in all four limbs, reduced deep-tendon reflexes, and wide-based gait. He had oromandibular dyskinesia causing severe dysphagia. Elevated serum creatinine kinase (CK) was first noted in his thirties, but investigations, including muscle biopsy at that time, were inconclusive. Brain magnetic resonance imaging showed white matter volume loss, atrophic basal ganglia, and chronic small vessel ischemia. Despite raised CK, electromyography did not show myopathic changes. Exome gene panel testing was negative, but targeted genetic analysis revealed a hemizygous pathogenic variant in the XK gene c.895C > T p.(Gln299Ter), consistent with a diagnosis of McLeod syndrome. The patient died of sepsis, and autopsy showed astrocytic gliosis and atrophy of the basal ganglia, diffuse iron deposition in the putamen, and mild Alzheimer's pathology. Muscle pathology was indicative of mild chronic neurogenic atrophy without overt myopathic features. He had non-specific cardiomyopathy and splenomegaly. McLeod syndrome is an ultra-rare neurodegenerative disorder caused by X-linked recessive mutations in the XK gene. Diagnosis has management implications since patients are at risk of severe transfusion reactions and cardiac complications. When a clinical diagnosis is suspected, candidate genes should be interrogated rather than solely relying on exome panels.


Asunto(s)
Enfermedades Musculares , Neuroacantocitosis , Masculino , Humanos , Persona de Mediana Edad , Neuroacantocitosis/genética , Neuroacantocitosis/diagnóstico , Neuroacantocitosis/patología , Enfermedades Musculares/patología , Ganglios Basales/patología , Atrofia/patología
8.
Nat Commun ; 14(1): 8487, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135686

RESUMEN

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Humanos , Estudios de Seguimiento , Citocinas , COVID-19/complicaciones , Sueroterapia para COVID-19 , Autoanticuerpos , Mediadores de Inflamación , Biomarcadores , Proteína Ácida Fibrilar de la Glía
9.
Front Neurol ; 14: 1292320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107630

RESUMEN

Background: Leber Hereditary Optic Neuropathy (LHON) is the most common inherited mitochondrial disease characterized by bilateral, painless, subacute visual loss with a peak age of onset in the second to third decade. Historically, LHON was thought to be exclusively maternally inherited due to mutations in mitochondrial DNA (mtDNA); however, recent studies have identified an autosomal recessive form of LHON (arLHON) caused by point mutations in the nuclear gene, DNAJC30. Case Presentations: In this study, we report the cases of three Eastern European individuals presenting with bilateral painless visual loss, one of whom was also exhibiting motor symptoms. After a several-year-long diagnostic journey, all three patients were found to carry the homozygous c.152A>G (p.Tyr51Cys) mutation in DNAJC30. This has been identified as the most common arLHON pathogenic variant and has been shown to exhibit a significant founder effect amongst Eastern European individuals. Conclusion: This finding adds to the growing cohort of patients with arLHON and demonstrates the importance of DNAJC30 screening in patients with molecularly undiagnosed LHON, particularly in Eastern European individuals. It is of heightened translational significance as patients diagnosed with arLHON exhibit a better prognosis and response to therapeutic treatment with the co-enzyme Q10 analog idebenone.

10.
Hum Mol Genet ; 33(1): 91-101, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37815936

RESUMEN

Mutations affecting the mitochondrial intermembrane space protein CHCHD10 cause human disease, but it is not known why different amino acid substitutions cause markedly different clinical phenotypes, including amyotrophic lateral sclerosis-frontotemporal dementia, spinal muscular atrophy Jokela-type, isolated autosomal dominant mitochondrial myopathy and cardiomyopathy. CHCHD10 mutations have been associated with deletions of mitochondrial DNA (mtDNA deletions), raising the possibility that these explain the clinical variability. Here, we sequenced mtDNA obtained from hearts, skeletal muscle, livers and spinal cords of WT and Chchd10 G58R or S59L knockin mice to characterise the mtDNA deletion signatures of the two mutant lines. We found that the deletion levels were higher in G58R and S59L mice than in WT mice in some tissues depending on the Chchd10 genotype, and the deletion burden increased with age. Furthermore, we observed that the spinal cord was less prone to the development of mtDNA deletions than the other tissues examined. Finally, in addition to accelerating the rate of naturally occurring deletions, Chchd10 mutations also led to the accumulation of a novel set of deletions characterised by shorter direct repeats flanking the deletion breakpoints. Our results indicate that Chchd10 mutations in mice induce tissue-specific deletions which may also contribute to the clinical phenotype associated with these mutations in humans.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Ratones , Animales , Mutación , Mitocondrias/metabolismo , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
11.
Sci Adv ; 9(43): eadi4038, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878704

RESUMEN

Heteroplasmic mitochondrial DNA (mtDNA) mutations are a major cause of inherited disease and contribute to common late-onset human disorders. The late onset and clinical progression of mtDNA-associated disease is thought to be due to changing heteroplasmy levels, but it is not known how and when this occurs. Performing high-throughput single-cell genotyping in two mouse models of human mtDNA disease, we saw unanticipated cell-to-cell differences in mtDNA heteroplasmy levels that emerged prenatally and progressively increased throughout life. Proliferating spleen cells and nondividing brain cells had a similar single-cell heteroplasmy variance, implicating mtDNA or organelle turnover as the major force determining cell heteroplasmy levels. The two different mtDNA mutations segregated at different rates with no evidence of selection, consistent with different rates of random genetic drift in vivo, leading to the accumulation of cells with a very high mutation burden at different rates. This provides an explanation for differences in severity seen in human diseases caused by similar mtDNA mutations.


Asunto(s)
ADN Mitocondrial , Mosaicismo , Animales , Ratones , Humanos , ADN Mitocondrial/genética , Mitocondrias/genética , Mutación , Análisis de la Célula Individual
13.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609196

RESUMEN

The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.

14.
Nature ; 620(7975): 839-848, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587338

RESUMEN

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.


Asunto(s)
Núcleo Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Heteroplasmia , Mitocondrias , Anciano , Humanos , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Estudio de Asociación del Genoma Completo , Heteroplasmia/genética , Mitocondrias/genética , Núcleo Celular/genética , Alelos , Polimorfismo de Nucleótido Simple , Mutación INDEL , G-Cuádruplex
17.
Handb Clin Neurol ; 194: 3-6, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813319

RESUMEN

This chapter provides a overview of this volume of the Handbook of Clinical Neurology, placing recent advances in our understanding of mitochondrial disorders in a historical context, and speculates about the future.


Asunto(s)
Enfermedades Mitocondriales , Neurología , Humanos , Mitocondrias/genética , ADN Mitocondrial , Mutación
18.
Handb Clin Neurol ; 194: xi, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813326
19.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36827974

RESUMEN

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Asunto(s)
Mitocondrias , Organogénesis , Animales , Femenino , Humanos , Ratones , Embarazo , Linaje de la Célula , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales , Especificidad de Órganos , Desarrollo Embrionario , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo
20.
Neurol Genet ; 9(1): e200054, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36686280

RESUMEN

Background and Objectives: Sporadic Creutzfeldt-Jakob disease (sCJD) has established genetic risk factors, but, in contrast to genetic and acquired CJD, the initial trigger for misfolded prion aggregation and spread is not known. In this study, we tested the hypotheses that pathologic somatic variants in the prion gene PRNP are increased in sCJD, potentially leading to the seeding of misfolded prion protein. Methods: High-depth amplicon-based short read sequencing of the PRNP coding region was performed on postmortem brain tissue from patients with a clinical and neuropathologic diagnosis of sCJD (n = 142), Alzheimer disease (AD) (n = 51) and controls with no clinical or neuropathologic diagnosis of a neurodegenerative disease (n = 71). Each DNA sample was sequenced twice, including independent PCR amplification, library preparation, and sequencing. We used RePlow to call somatic variants with high sensitivity and specificity and optimal sequence kernel association test to compare variant burden between groups. Results: Two sCJD cases had somatic (variant allele frequency 0.5-1%) PRNP variants not previously identified, but with high in silico predicated pathogenicity. However, the pathogenicity of these variants is uncertain, as both located in the octapeptide repeat region where no point variations have previously been associated with sCJD. There was no overall difference in burden somatic PRNP in sCJD compared with controls and a lower burden compared with Alzheimer disease. Discussion: Somatic variants in PRNP are unlikely to play a major role in sCJD but may contribute to the disease mechanism in a minority of cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...