Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(42): 28781-28787, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29048084

RESUMEN

Manganese oxides (MnxOy) are considered as a promising catalyst alternative to platinum in fuel cell applications. In fact, a proper catalyst is needed in order to facilitate the oxygen reduction reaction (ORR) at the cathode, and platinum is considered the best material due to its low overpotential for this reaction. Contrary to platinum, MnxOy is inexpensive, environmentally friendly and can be shaped into several nanostructures; furthermore, most of them show significant electro-catalytic performance. Several strategies have been carried out in order to increase their efficiency, by preparing light and high-surface area materials. In this framework, nanofibres are among the most promising nanostructures that can be used for this purpose. In this work, a study of the thermal, morphological and catalytic behavior of MnxOy nanofibres obtained through the electrospinning technique is proposed. Emphasis is given to the thermal evolution of the precursors, proposing a possible crystallization mechanism of the different manganese oxides obtained. It turns out that manganese oxide nanofibres exhibit good catalytic performance for the ORR, comparable to those obtained by using Pt-based catalysts.

2.
J Mater Chem B ; 5(44): 8799-8813, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29456858

RESUMEN

The widespread use of ZnO nanomaterials for biomedical applications, including therapeutic drug delivery or stimuli-responsive activation, as well as imaging, imposes a careful control over the colloidal stability and long-term behaviour of ZnO in biological media. Moreover, the effect of ZnO nanostructures on living cells, in particular cancer cells, is still under debate. This paper discusses the role of surface chemistry and charge of zinc oxide nanocrystals, of around 15 nm in size, which influence their behaviour in biological fluids and effect on cancer cells. In particular, we address this problem by modifying the surface of pristine ZnO nanocrystals (NCs), rich of hydroxyl groups, with positively charged amino-propyl chains or, more innovatively, by self-assembling a double-lipidic membrane, shielding the ZnO NCs. Our findings show that the prolonged immersion in simulated human plasma and in the cell culture medium leads to highly colloidally dispersed ZnO NCs only when coated by the lipidic bilayer. In contrast, the pristine and amine-functionalized NCs form huge aggregates after already one hour of immersion. Partial dissolution of these two samples into potentially cytotoxic Zn2+ cations takes place, together with the precipitation of phosphate and carbonate salts on the NCs' surface. When exposed to living HeLa cancer cells, higher amounts of lipid-shielded ZnO NCs are internalized with respect to the other samples, thus showing a reduced cytotoxicity, based on the same amount of internalized NCs. These results pave the way for the development of novel theranostic platforms based on ZnO NCs. The new formulation of ZnO shielded with a lipid-bilayer will prevent strong aggregation and premature degradation into toxic by-products, and promote a highly efficient cell uptake for further therapeutic or diagnostic functions.

3.
Nanoscale ; 8(12): 6866-76, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26955909

RESUMEN

The use of TiO2 nanotube (NT) arrays as templates for hydrothermal conversion of one-dimensional barium titanate (BaTiO3) structures is considered a promising synthesis approach, even though the formation mechanisms are not yet fully understood. Herein we report a nanostructural study by means of XRD and (HR)TEM of high aspect ratio TiO2-NTs hydrothermally converted into BaTiO3. The nanostructure shows two different and well-defined regions: at the top the conversion involves complete dissolution of NTs and subsequent precipitation of BaTiO3 crystals by homogeneous nucleation, followed by the growth of dendritic structures by aggregation and oriented attachment mechanisms. Instead, at the bottom, the low liquid/solid ratio, due to the limited amount of Ba solution that infiltrates the NTs, leads to the rapid crystallization of such a solution into BaTiO3, thus allowing the NTs to act as a template for the formation of highly oriented one-dimensional nanostructures. The in-depth analysis of the structural transformations that take place during the formation of the rod-like arrays of BaTiO3 could help elucidate the conversion mechanism, thus paving the way for the optimization of the synthesis process in view of new applications in energy harvesting devices, where easy and low temperature processing, controlled composition, morphology and functional properties are required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA