Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pain ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38723182

RESUMEN

ABSTRACT: Paclitaxel-induced peripheral neurotoxicity (PIPN) is a potentially dose-limiting side effect in anticancer chemotherapy. Several animal models of PIPN exist, but their results are sometimes difficult to be translated into the clinical setting. We compared 2 widely used PIPN models characterized by marked differences in their methodologies. Female C57BL/6JOlaHsd mice were used, and they received only paclitaxel vehicle (n = 38) or paclitaxel via intravenous injection (n = 19, 70 mg/kg) once a week for 4 weeks (Study 1) or intraperitoneally (n = 19, 10 mg/kg) every 2 days for 7 times (Study 2). At the end of treatment and in the follow-up, mice underwent behavioral and neurophysiological assessments of PIPN. At the same time points, some mice were killed and dorsal root ganglia, skin, and sciatic and caudal nerve samples underwent pathological examination. Serum neurofilament light levels were also measured. The differences in the neurotoxicity parameters were analyzed using a nonparametric Mann-Whitney test, with significance level set at P < 0.05. Study 1 showed significant and consistent behavioral, neurophysiological, pathological, and serological changes induced by paclitaxel administration at the end of treatment, and most of these changes were still evident in the follow-up period. By contrast, study 2 evidenced only a transient small fiber neuropathy, associated with neuropathic pain. Our comparative study clearly distinguished a PIPN model recapitulating all the clinical features of the human condition and a model showing only small fiber neuropathy with neuropathic pain induced by paclitaxel.

2.
J Peripher Nerv Syst ; 29(1): 47-57, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009865

RESUMEN

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common and long-lasting adverse event of several anticancer compounds, for which treatment has not yet been developed. To fill this gap, preclinical studies are warranted, exploiting highly translational outcome measure(s) to transfer data from bench to bedside. Nerve excitability testing (NET) enables to test in vivo axonal properties and can be used to monitor early changes leading to axonal damage. METHODS: We tested NET use in two different CIPN rat models: oxaliplatin (OHP) and paclitaxel (PTX). Animals (female) were chronically treated with either PTX or OHP and compared to respective control animals. NET was performed as soon as the first injection was administered. At the end of the treatment, CIPN onset was verified via a multimodal and robust approach: nerve conduction studies, nerve morphometry, behavioural tests and intraepidermal nerve fibre density. RESULTS: NET showed the typical pattern of axonal hyperexcitability in the 72 h following the first OHP administration, whereas it showed precocious signs of axonal damage in PTX animals. At the end of the month of treatment, OHP animals showed a pattern compatible with a mild axonal sensory polyneuropathy. Instead, PTX cohort was characterised by a rather severe sensory axonal polyneuropathy with minor signs of motor involvement. INTERPRETATION: NET after the first administration demonstrated the ongoing OHP-related channelopathy, whereas in PTX cohort it showed precocious signs of axonal damage. Therefore, NET could be suggested as an early surrogate marker in clinical trials, to detect precocious changes leading to axonal damage.


Asunto(s)
Antineoplásicos , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Polineuropatías , Humanos , Femenino , Ratas , Animales , Antineoplásicos/toxicidad , Oxaliplatino/toxicidad , Axones , Paclitaxel/toxicidad , Síndromes de Neurotoxicidad/diagnóstico
3.
J Peripher Nerv Syst ; 29(1): 58-71, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126610

RESUMEN

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated. METHODS: Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis. RESULTS: At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration. INTERPRETATION: Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.


Asunto(s)
Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Animales , Masculino , Ratas , Síndromes de Neurotoxicidad/patología , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Ratas Wistar , Piel/patología
4.
Brain Res Bull ; 203: 110769, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748696

RESUMEN

Gait analysis could be used in animal models as an indicator of sensory ataxia due to chemotherapy-induced peripheral neurotoxicity (CIPN). Over the years, gait analysis in in vivo studies has evolved from simple observations carried out by a trained operator to computerised systems with machine learning that allow the quantification of any variable of interest and the establishment of algorithms for behavioural classification. However, there is not a consensus on gait analysis use in CIPN animal models; therefore, we carried out a systematic review. Of 987 potentially relevant studies, 14 were included, in which different methods were analysed (observation, footprint and CatWalk™). We presented the state-of-the-art of possible approaches to analyse sensory ataxia in rodent models, addressing advantages and disadvantages of different methods available. Semi-automated methods may be of interest when preventive or therapeutic strategies are evaluated, also considering their methodological simplicity and automaticity; up to now, only CatWalk™ analysis has been tested. Future studies should expect that CIPN-affected animals tend to reduce hind paw support due to pain, allodynia or loss of sensation, and an increase in swing phase could or should be observed. Few available studies documented these impairments at the last time point, and only appeared later on respect to other earlier signs of CIPN (such as altered neurophysiological findings). For that reason, gait impairment could be interpreted as late repercussions of loss of sensory.


Asunto(s)
Antineoplásicos , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Animales , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Análisis de la Marcha , Roedores , Síndromes de Neurotoxicidad/etiología , Antineoplásicos/toxicidad , Ataxia
5.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511245

RESUMEN

Cisplatin (CDDP) is an efficient chemotherapeutic agent broadly used to treat solid cancers. Chemotherapy with CDDP can cause significant unwanted side effects such as renal toxicity and peripheral neurotoxicity. CDDP is a substrate of organic cation transporters (OCT), transporters that are highly expressed in renal tissue. Therefore, CDDP uptake by OCT may play a role in causing unwanted toxicities of CDDP anticancer treatment. In this study, the contribution of the mouse OCT2 (mOCT2) to CDDP nephro- and peripheral neurotoxicity was investigated by comparing the effects of cyclic treatment with low doses of CDDP on renal and neurological functions in wild-type (WT) mice and mice with genetic deletion of OCT2 (OCT2-/- mice). This CDDP treatment protocol caused significant impairment of kidneys and peripherical neurological functions in WT mice. These effects were significantly reduced in OCT2-/- mice, however, less profoundly than what was previously measured in mice with genetic deletion of both OCT1 and 2 (OCT1-2-/- mice). Comparing the apparent affinities (IC50) of mOCT1 and mOCT2 for CDDP, the mOCT1 displayed a higher affinity for CDDP than the mOCT2 (IC50: 9 and 558 µM, respectively). Also, cellular toxicity induced by incubation with 100 µM CDDP was more pronounced in cells stably expressing mOCT1 than in cells expressing mOCT2. Therefore, in mice, CDDP uptake by both OCT1 and 2 contributes to the development of CDDP undesired side effects. OCT seem to be suitable targets for establishing treatment protocols aimed at decreasing unwanted CDDP toxicity and improving anticancer treatment with CDDP.


Asunto(s)
Cisplatino , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Ratones , Transporte Biológico , Cisplatino/toxicidad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Riñón/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/genética , Transportador 2 de Cátion Orgánico/metabolismo
6.
Sci Rep ; 13(1): 3991, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894669

RESUMEN

Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN), one of the major dose-limiting side effects of colorectal cancer treatment, is characterized by both acute and chronic syndromes. Acute exposure to low dose OHP on dorsal root ganglion (DRG) neurons is able to induce an increase in intracellular calcium and proton concentration, thus influencing ion channels activity and neuronal excitability. The Na+/H+ exchanger isoform-1 (NHE1) is a plasma membrane protein that plays a pivotal role in intracellular pH (pHi) homeostasis in many cell types, including nociceptors. Here we show that OHP has early effects on NHE1 activity in cultured mouse DRG neurons: the mean rate of pHi recovery was strongly reduced compared to vehicle-treated controls, reaching levels similar to those obtained in the presence of cariporide (Car), a specific NHE1 antagonist. The effect of OHP on NHE1 activity was sensitive to FK506, a specific calcineurin (CaN) inhibitor. Lastly, molecular analyses revealed transcriptional downregulation of NHE1 both in vitro, in mouse primary DRG neurons, and in vivo, in an OIPN rat model. Altogether, these data suggest that OHP-induced intracellular acidification of DRG neurons largely depends on CaN-mediated NHE1 inhibition, revealing new mechanisms that OHP could exert to alter neuronal excitability, and providing novel druggable targets.


Asunto(s)
Síndromes de Neurotoxicidad , Intercambiadores de Sodio-Hidrógeno , Animales , Ratones , Ratas , Ganglios Espinales/metabolismo , Concentración de Iones de Hidrógeno , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Oxaliplatino/farmacología , Dolor/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transcripción Genética
7.
Toxics ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36850969

RESUMEN

Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity.

8.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675203

RESUMEN

Peripheral Neuropathies (PN) are common conditions whose treatment is still lacking in most cases. Animal models are crucial, but experimental procedures should be refined in some cases. We performed a detailed characterization of the ventral caudal nerve to contribute to a more effective assessment of axonal damage in future PN studies. PN was induced via weekly systemic injection of a neurotoxic drug (paclitaxel); we compared the control and PN-affected rats, performing serial neurophysiological evaluations of the caudal nerve for its entire length. On the same nerve portions, we performed light microscopy and ultrastructural pathological observations to assess the severity of damage and verify the integrity of the surrounding structures. Neurophysiological and morphological analyses confirmed that a severe axonopathy had ensued in the PN group, with a length-dependent modality, matching morphological observations. The site of neurophysiological recording (e.g., distance from the base of the tail) was critical for achieving useful data. A flexible experimental paradigm should be considered in animal studies investigating axonal PN, particularly if the expected severity is relevant; the mid-portion of the tail might be the most appropriate site: there damage might be remarkable but neither as extreme as at the tip of the tail nor as mild as at the base of the tail.


Asunto(s)
Tejido Nervioso , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Ratas , Animales , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Tejido Nervioso/patología , Paclitaxel/efectos adversos , Axones/patología , Síndromes de Neurotoxicidad/patología
9.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077454

RESUMEN

Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na+ voltage-operated channels (Na+VOC). This leads to sustained depolarisation which can activate the reverse mode of the Na+/Ca2+ exchanger 2 (NCX2), resulting in toxic Ca2+ accumulation and axonal damage (ADa). We explored the role of NCX2 in in vitro and in vivo settings. Embryonic rat Dorsal Root Ganglia (DRG) organotypic cultures treated with SEA0400 (SEA), a NCX inhibitor, were used to assess neuroprotection in a proof-of-concept and pilot study to exploit NCX modulation to prevent ADa. In vivo, OHP treated mice (7 mg/Kg, i.v., once a week for 8 weeks) were compared with a vehicle-treated group (n = 12 each). Neurophysiological and behavioural testing were performed to characterise acute and chronic OIPN, and morphological analyses were performed to detect ADa. Immunohistochemistry, immunofluorescence, and western blotting (WB) analyses were also performed to demonstrate changes in NCX2 immunoreactivity and protein expression. In vitro, NCX inhibition was matched by ADa mitigation. In the in vivo part, after verifyingboth acute and chronic OIPN had ensued, we confirmed via immunohistochemistry, immunofluorescence, and WB that a significant NCX2 alteration had ensued in the OHP group. Our data suggest NCX2 involvement in ADa development, paving the way to a new line of research to prevent OIPN.


Asunto(s)
Síndromes de Neurotoxicidad , Intercambiador de Sodio-Calcio , Animales , Axones/metabolismo , Ratones , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Oxaliplatino/efectos adversos , Proyectos Piloto , Ratas , Intercambiador de Sodio-Calcio/metabolismo
10.
Biomedicines ; 11(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36672528

RESUMEN

The development and progression of diabetic polyneuropathy (DPN) are due to multiple mechanisms. The creation of reliable animal models of DPN has been challenging and this issue has not yet been solved. However, despite some recognized differences from humans, most of the current knowledge on the pathogenesis of DPN relies on results achieved using rodent animal models. The simplest experimental DPN model reproduces type 1 diabetes, induced by massive chemical destruction of pancreatic beta cells with streptozotocin (STZ). Spontaneous/transgenic models of diabetes are less frequently used, mostly because they are less predictable in clinical course, more expensive, and require a variable time to achieve homogeneous metabolic conditions. Among them, Zucker diabetic fatty (ZDF) rats represent a typical type 2 diabetes model. Both STZ-induced and ZDF rats have been extensively used, but only very few studies have compared the long-term similarities and differences existing between these two models. Moreover, inconsistencies have been reported regarding several aspects of short-term in vivo studies using these models. In this study, we compared the long-term course of DPN in STZ-treated Sprague-Dawley and ZDF rats with a multimodal set of readout measures.

11.
Cancers (Basel) ; 13(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34638498

RESUMEN

This study evaluated suvecaltamide, a selective T-type calcium channel modulator, on chemotherapy-induced peripheral neurotoxicity (CIPN) and anti-cancer activity associated with bortezomib (BTZ). Rats received BTZ (0.2 mg/kg thrice weekly) for 4 weeks, then BTZ alone (n = 8) or BTZ+suvecaltamide (3, 10, or 30 mg/kg once daily; each n = 12) for 4 weeks. Nerve conduction velocity (NCV), mechanical threshold, ß-tubulin polymerization, and intraepidermal nerve fiber (IENF) density were assessed. Proteasome inhibition was evaluated in peripheral blood mononuclear cells. Cytotoxicity was assessed in human multiple myeloma cell lines (MCLs) exposed to BTZ alone (IC50 concentration), BTZ+suvecaltamide (10, 30, 100, 300, or 1000 nM), suvecaltamide alone, or vehicle. Tumor volume was estimated in athymic nude mice bearing MCL xenografts receiving vehicle, BTZ alone (1 mg/kg twice weekly), or BTZ+suvecaltamide (30 mg/kg once daily) for 28 days, or no treatment (each n = 8). After 4 weeks, suvecaltamide 10 or 30 mg/kg reversed BTZ-induced reduction in NCV, and suvecaltamide 30 mg/kg reversed BTZ-induced reduction in IENF density. Proteasome inhibition and cytotoxicity were similar between BTZ alone and BTZ+suvecaltamide. BTZ alone and BTZ+suvecaltamide reduced tumor volume versus the control (day 18), and BTZ+suvecaltamide reduced tumor volume versus BTZ alone (day 28). Suvecaltamide reversed CIPN without affecting BTZ anti-cancer activity in preclinical models.

12.
J Neurosci Methods ; 363: 109323, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34391792

RESUMEN

BACKGROUND: Peripheral neuropathy treatment is not always satisfactory. To fill this gap, inferences from bench side are warranted, where morphological and pathogenetic determinations can be performed. Nerve conduction studies (NCS) are ideal to translate results from preclinical to clinical setting. NEW METHODS: We propose a comprehensive 8-minute protocol for sensory-motor neurophysiological assessment, similar to routine clinical practice: sensory proximal and distal caudal nerves, motor caudal nerve, and sensory digital nerve recordings were used and tested in 2 different experimental settings. In Experiment 1 we compared control (CTRL) animals to a severe sensory-motor polyneuropathy (animals treated with vincristine [VCR]), and in Experiment 2 CTRL animals were compared to a mild sensory polyneuropathy (animals treated with oxaliplatin [OHP]). NCS were performed after 1-month of chemotherapy and matched with confirmatory neuropathological analyses. RESULTS: VCR treated animals showed, at NCS, a relevant sensory-motor polyneuropathy ensued at the end of treatment; whereas, OHP animals showed a mild distal sensory neuropathy. These patterns were confirmed by neuropathological analysis. COMPARISON WITH EXISTING METHODS: In literature, the majority of proposed neurophysiological protocols relies mainly on a single nerve testing, rather than a combination of them, and only a few studies tested both caudal and sciatic nerve branches, nevertheless not aiming at fully reproduce clinical protocols (e.g., seeking for length-dependency); to provide evidence of appropriateness of our protocol we applied a gold standard: neuropathology. CONCLUSION: The simple and rapid protocol here presented can be suggested as a good translation outcome measure in preclinical setting.


Asunto(s)
Conducción Nerviosa , Enfermedades del Sistema Nervioso Periférico , Animales , Neurofisiología , Nervios Periféricos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
13.
Brain Sci ; 11(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499072

RESUMEN

Peripheral neuropathies (PNs) are a type of common disease that hampers the quality of life of affected people. Treatment, in most cases, is just symptomatic and often ineffective. To improve drug discovery in this field, preclinical evidence is warranted. In vivo rodent models allow a multiparametric approach to test new therapeutic strategies, since they can allow pathogenetic and morphological studies different from the clinical setting. However, human readouts are warranted to promptly translate data from the bench to the bedside. A feasible solution would be neurophysiology, performed similarly at both sides. We describe a simple protocol that reproduces the standard clinical protocol of a neurophysiology hospital department. We devised the optimal montage for sensory and motor recordings (neurography) in mice, and we also implemented F wave testing and a short electromyography (EMG) protocol at rest. We challenged this algorithm by comparing control animals (BALB/c mice) with a model of mild neuropathy to grasp even subtle changes. The neurophysiological results were confirmed with neuropathology. The treatment group showed all expected alterations. Moreover, the neurophysiology matched the neuropathological analyses. Therefore, our protocol can be suggested to promptly translate data from the bench to the bedside and vice versa.

14.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494384

RESUMEN

The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Inmunoglobulinas Intravenosas/administración & dosificación , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/etiología , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Síndromes de Neurotoxicidad/diagnóstico , Paclitaxel/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Ratas , Resultado del Tratamiento
15.
Front Pharmacol ; 12: 817236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126148

RESUMEN

Chemotherapy-induced peripheral neurotoxicity is a common dose-limiting side effect of several cancer chemotherapeutic agents, and no effective therapies exist. Here we constructed a systems pharmacology model of intracellular signaling in peripheral neurons to identify novel drug targets for preventing peripheral neuropathy associated with proteasome inhibitors. Model predictions suggested the combinatorial inhibition of TNFα, NMDA receptors, and reactive oxygen species should prevent proteasome inhibitor-induced neuronal apoptosis. Dexanabinol, an inhibitor of all three targets, partially restored bortezomib-induced reduction of proximal action potential amplitude and distal nerve conduction velocity in vitro and prevented bortezomib-induced mechanical allodynia and thermal hyperalgesia in rats, including a partial recovery of intraepidermal nerve fiber density. Dexanabinol failed to restore bortezomib-induced decreases in electrophysiological endpoints in rats, and it did not compromise bortezomib anti-cancer effects in U266 multiple myeloma cells and a murine xenograft model. Owing to its favorable safety profile in humans and preclinical efficacy, dexanabinol might represent a treatment option for bortezomib-induced neuropathic pain.

16.
Expert Opin Drug Metab Toxicol ; 17(2): 215-226, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33283553

RESUMEN

Introduction: One of the most common side effects during vincristine (VCR) use is the establishment of VCR-induced peripheral neuropathy (VIPN). Among several risk factors that can influence the development of VIPN, such as cumulative dose and patient's age, sex, ethnicity, and genetic variants, this review is focused on the genetic variability. Areas covered: A literature research was performed firstly using the following PubMed search string ((((CIPN OR (vincristine AND neurotoxicity OR (vincristine AND neuropathy))) AND (polymorphisms OR (genetic variants OR (genetic factors OR (genetic profile OR (pharmacogenetics OR (genome-wide OR (genetic risk OR (expression genotype))))))))))) but also other relevant papers cited by the selected articles were included. Based on the obtained results, we identified two main categories of genes: genes involved in pharmacokinetics (genes related to metabolism and transport) or pharmacodynamics (genes related to mechanism of action) of VCR. Expert opinion: Despite several clinical retrospective studies investigating the possible correlations between patient genotype and VIPN onset, contrasting and inconsistent results are reported. In conclusion, given the clinical relevance of VIPN, further and more focused research would be fundamental in order to identify genetic variants able to predict its development and to allow a safer management of treated patients.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Síndromes de Neurotoxicidad/etiología , Vincristina/efectos adversos , Antineoplásicos Fitogénicos/administración & dosificación , Genotipo , Humanos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/genética , Farmacogenética , Polimorfismo Genético , Factores de Riesgo , Vincristina/administración & dosificación
17.
Exp Neurol ; 334: 113458, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32889007

RESUMEN

Chemotherapy-induced peripheral neurotoxicity represents one of the most relevant dose-limiting side effects that can affect cancer patients treated with the common antineoplastic agents. Since the severity of neurotoxicity often leads to dose reduction or early cessation of chemotherapy, the investigation of molecular mechanisms underlying chemotherapy-induced peripheral neurotoxicity is an urgent clinical need in order to better understand its physiopathology and find effective strategies for neuroprotection. Several in vivo preclinical models of chemotherapy-induced peripheral neurotoxicity have been developed but a great variability in mouse strain, dose, route of administration of the drug, treatment schedule and assessment of neurotoxicity is observed between the different published studies making difficult the comparison and interpretation of their results. In many of these studies only behavioural tests are used as outcome measures, while possible neurophysiological and neuropathological changes are not evaluated. In this study, focused on experimental oxaliplatin-induced peripheral neurotoxicity, we reproduced and compared four mouse models with very different drug dose (low or high dose-intensity) and treatment schedules (short or long-term treatment), selected from the literature. Using a multimodal assessment based on behavioural, neurophysiological and neuropathological methods, we evidenced remarkable differences in the results obtained in the selected animal models. This work suggests the importance of a multimodal approach including extensive pathological investigation to confirm the behavioural results.


Asunto(s)
Antineoplásicos/toxicidad , Oxaliplatino/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso Periférico/psicología , Distribución Aleatoria
18.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882796

RESUMEN

The comments sent by Stehr, Lundstom and Karlsson with reference to our article "Calmangafodipir reduces sensory alterations and prevents intraepidermal nerve fiber loss in a mouse model of oxaliplatin-induced peripheral neurotoxicity" are very interesting, since they suggest possible mechanisms of action of the compound, which might contribute to its protective action [...].

19.
Antioxidants (Basel) ; 9(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645985

RESUMEN

Oxaliplatin (OHP) is an antineoplastic compound able to induce peripheral neurotoxicity. Oxidative stress has been suggested to be a key factor in the development of OHP-related peripheral neurotoxicity. Mangafodipir, a contrast agent possessing mitochondrial superoxide dismutase (MnSOD)-mimetic activity, has been tested as a cytoprotector in chemotherapy-induced peripheral neurotoxicity (CIPN). Calmangafodipir (PledOx®) has even better therapeutic activity. We investigated a BALB/c mouse model of OHP-related CIPN and the effects of the pre-treatment of calmangafodipir (2.5, 5, or 10 mg/kg intravenously) on sensory perception, and we performed a pathological study on skin biopsies to assess intraepidermal nerve fiber (IENF) density. At the end of the treatments, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced mechanical allodynia and cold thermal hyperalgesia, but calmangafodipir 5 mg/kg prevented these effects. Accordingly, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced a significant reduction in IENF density, but calmangafodipir 5 mg/kg prevented this reduction. These results confirm a protective effect of calmangafodipir against OHP-induced small fiber neuropathy. Interestingly, these results are in agreement with previous observations suggesting a U-shaped effect of calmangafodipir, with the 10 mg/kg dose less effective than the lower doses.

20.
J Clin Invest ; 130(9): 4601-4606, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484793

RESUMEN

Peripheral neurotoxicity is a debilitating condition that afflicts up to 90% of patients with colorectal cancer receiving oxaliplatin-containing therapy. Although emerging evidence has highlighted the importance of various solute carriers to the toxicity of anticancer drugs, the contribution of these proteins to oxaliplatin-induced peripheral neurotoxicity remains controversial. Among candidate transporters investigated in genetically engineered mouse models, we provide evidence for a critical role of the organic cation transporter 2 (OCT2) in satellite glial cells in oxaliplatin-induced neurotoxicity, and demonstrate that targeting OCT2 using genetic and pharmacological approaches ameliorates acute and chronic forms of neurotoxicity. The relevance of this transport system was verified in transporter-deficient rats as a secondary model organism, and translational significance of preventive strategies was demonstrated in preclinical models of colorectal cancer. These studies suggest that pharmacological targeting of OCT2 could be exploited to afford neuroprotection in cancer patients requiring treatment with oxaliplatin.


Asunto(s)
Neuroglía/metabolismo , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Oxaliplatino , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Neuroglía/patología , Neuronas/patología , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/patología , Transportador 2 de Cátion Orgánico/genética , Oxaliplatino/efectos adversos , Oxaliplatino/farmacocinética , Oxaliplatino/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...