Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 4(6): eaar3330, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29881776

RESUMEN

Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate.

2.
Proc Natl Acad Sci U S A ; 113(26): 7071-6, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298370

RESUMEN

Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a "Lake Gale" catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

3.
J Geophys Res Planets ; 121(1): 75-106, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27134806

RESUMEN

The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

4.
Am Mineral ; 100(4): 824-836, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28798492

RESUMEN

The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H2O inside the CheMin instrument (relative humidity <1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 Å, but largely remain open in the Cumberland sample with a basal spacing of ~13.2 Å. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in situ via aqueous alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of thousands of years. Mineralogical evidence of the persistence of benign aqueous conditions at YKB for extended periods indicates a potentially habitable environment where life could establish itself. Mediated oxidation of Fe2+ in olivine to Fe3+ in magnetite, and perhaps in smectites provided a potential energy source for organisms.

5.
Environ Geochem Health ; 34(3): 313-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21866318

RESUMEN

Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.


Asunto(s)
Berilio/análisis , Berilio/toxicidad , Exposición por Inhalación , Pulmón/química , Minería , Exposición Profesional , Sudor/química , Berilio/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fagosomas/química , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Alveolos Pulmonares/química , Silicatos/química , Silicatos/metabolismo , Silicatos/toxicidad , Sudor/efectos de los fármacos , Sudor/metabolismo , Utah , Difracción de Rayos X
6.
J Toxicol Environ Health A ; 71(22): 1468-81, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18836922

RESUMEN

Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol particles may confer higher bioavailability, respirable ore dusts likely confer considerably less. While finished product beryllium hydroxide particles may confer bioavailability similar to that of high-CBD risk aerosols, physical exposure factors (i.e., large particle sizes) may limit development of alveolar lung burdens.


Asunto(s)
Berilio/química , Berilio/toxicidad , Industria Procesadora y de Extracción , Exposición Profesional , Silicatos/química , Aerosoles , Exposición Profesional/efectos adversos , Tamaño de la Partícula , Medición de Riesgo , Factores de Tiempo
7.
Rapid Commun Mass Spectrom ; 22(6): 865-72, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18293285

RESUMEN

A method for the removal of siderite from geological samples to determine organic carbon isotope compositions using elemental analysis isotope ratio mass spectrometry is presented which includes calculations for % organic carbon in samples that contain diagenetic carbonate. The proposed method employs in situ acidification of geological samples with 6 N HCl and silver capsule sample holders and was tested on modern peach leaf samples (NIST 1547) and ancient lacustrine samples from Valles Caldera, New Mexico. The in situ acidification technique eliminates potential errors associated with the removal of soluble organic material using standard acid decanting techniques and allows for removal of the less soluble siderite, which is not efficiently removed using vapor acidification techniques.

8.
Ind Health ; 45(6): 793-803, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18212475

RESUMEN

Inhalation of cobalt (Co) and tungsten carbide (WC) particles, but not Co or WC alone, may cause hard metal disease, risk of which does not appear to be uniform across cemented tungsten carbide (CTC) production processes. Inhalation of Co alone or in the presence of WC may cause asthma. Hypothesizing that aerosol size, chemical content, heterogeneity, and constituent compaction may be important exposure factors, we characterized aerosols from representative CTC manufacturing processes. Six work areas were sampled to characterize aerosol size distributions (dust, Co) and 12 work areas were sampled to characterize physicochemical properties (using scanning electron microscopy with energy dispersive x-ray spectrometry [SEM-EDX]). Bulk feedstock and process-generated powders were characterized with SEM-EDX and x-ray diffraction. The dust mass median diameter was respirable and the cobalt respirable mass fraction was highest (37%) in grinding. Morphology of particles changed with processing: individual, agglomerate, or aggregates (pre-sintered materials), then mostly compacted particles (subsequent to sintering). Elemental composition of particles became increasingly heterogeneous: mostly discrete Co or W particles (prior to spray drying), then heterogeneous W/Co particles (subsequent work areas). Variability in aerosol respirability and chemical heterogeneity could translate into differences in toxicity and support detailed characterization of physicochemical properties during exposure assessments.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Aleaciones/análisis , Cobalto/análisis , Polvo/análisis , Materiales Manufacturados , Exposición Profesional/análisis , Tungsteno/análisis , Aerosoles/análisis , Contaminantes Ocupacionales del Aire/efectos adversos , Aleaciones/efectos adversos , Asma/inducido químicamente , Cobalto/efectos adversos , Monitoreo del Ambiente/métodos , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/efectos adversos , Tamaño de la Partícula , Tungsteno/efectos adversos
9.
J Chem Phys ; 123(2): 24703, 2005 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-16050762

RESUMEN

We report a novel crystalline carbon-cage structure synthesized from laser-driven shock wave loading of a graphite-copper mixture to about 14+/-2 GPa and 1000 +/- 200 K. Quite unexpectedly, it can be structurally related to an extremely compressed three-dimensional C60 polymer with random displacement of C atoms around average positions equivalent to those of distorted C60 cages. Thus, the present carbon-cage structure represents a structural crossing point between graphite interlayer bridging and C60 polymerization as the two ways of forming diamond from two-dimensional and molecular carbon.

10.
Nature ; 431(7009): 663-5, 2004 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-15470421

RESUMEN

Recent reports of approximately 30 wt% of sulphate within saline sediments on Mars--probably occurring in hydrated form--suggest a role for sulphates in accounting for equatorial H2O observed in a global survey by the Odyssey spacecraft. Among salt hydrates likely to be present, those of the MgSO4*nH2O series have many hydration states. Here we report the exposure of several of these phases to varied temperature, pressure and humidity to constrain their possible H2O contents under martian surface conditions. We found that crystalline structure and H2O content are dependent on temperature-pressure history, that an amorphous hydrated phase with slow dehydration kinetics forms at <1% relative humidity, and that equilibrium calculations may not reflect the true H2O-bearing potential of martian soils. Mg sulphate salts can retain sufficient H2O to explain a portion of the Odyssey observations. Because phases in the MgSO4*nH2O system are sensitive to temperature and humidity, they can reveal much about the history of water on Mars. However, their ease of transformation implies that salt hydrates collected on Mars will not be returned to Earth unmodified, and that accurate in situ analysis is imperative.


Asunto(s)
Medio Ambiente Extraterrestre/química , Sulfato de Magnesio/análisis , Sulfato de Magnesio/química , Marte , Agua/análisis , Sedimentos Geológicos/química , Humedad , Cinética , Presión , Suelo/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...