Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297881

RESUMEN

The phenomenon of spin crossover involves coordination complexes with switchable spin states. This spin state change is accompanied by significant geometric changes such that low and high spin forms of a complex are distinct isomers that exist in equilibrium with one another. Typically, spin-state isomers interconvert rapidly and are similar enough in polarity to prevent their independent separation and isolation. We report here the first example, to our knowledge, of cobalt(II) spin-state isomers that can be physically separated. The reaction of Mo2(dpa)4 (dpa = 2,2'-dipyridylamide) with CoBr2 produces a mixture of two heterometallic compounds with a linear, metal-metal-bonded Mo[Formula: see text]Mo-Co chain. The complexes, SC-[BrMo2(dpa)4Co]Br (SC-2) and HS-[BrMo2(dpa)4CoBr] (HS-2), have identical compositions (Mo2Co(dpa)4Br2) but different ground spin states and coordination geometries of the Co(II) ion. In the solid state, SC-2 undergoes incomplete spin crossover from an S = 1/2 state to an S = 3/2 state, and HS-2 has a high spin, S = 3/2, ground state, as confirmed by SQUID magnetometry and EPR spectroscopy. Crystallographic analyses of SC-2 and HS-2 show that SC-2 has an elongated Co-Br distance relative to HS-2 and is best described as the salt [BrMo2(dpa)4Co]Br. This limits SC-2's solubility in nonpolar solvents and allows for the physical separation of the two isomers. Solution studies of SC-2 and HS-2 indicate that SC-2 and HS-2 interconvert slowly relative to the NMR time scale. Additional solution-state EPR and UV-vis absorption measurements demonstrate that the choice of solvent polarity determines the predominant isomer present in solution.

2.
Inorg Chem ; 61(38): 15058-15069, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094078

RESUMEN

Understanding the fundamental properties governing metal-metal interactions is crucial to understanding the electronic structure and thereby applications of multimetallic systems in catalysis, material science, and magnetism. One such property that is relatively underexplored within multimetallic systems is metal-metal bond polarity, parameterized by the electronegativities (χ) of the metal atoms involved in the bond. In heterobimetallic systems, metal-metal bond polarity is a function of the donor-acceptor (Δχ) interactions of the two bonded metal atoms, with electropositive early transition metals acting as electron acceptors and electronegative late transition metals acting as electron donors. We show in this work, through the preparation and systematic study of a series of Mo2M(dpa)4(OTf)2 (M = Cr, Mn, Fe, Co, and Ni; dpa = 2,2'-dipyridylamide; OTf = trifluoromethanesulfonate) heterometallic extended metal atom chain (HEMAC) complexes that this expected trend in χ can be reversed. Physical characterization via single-crystal X-ray diffraction, magnetometry, and spectroscopic methods as well as electronic structure calculations supports the presence of a σ symmetry 3c/3e- bond that is delocalized across the entire metal-atom chain and forms the basis of the heterometallic Mo2-M interaction. The delocalized 3c/3e- interaction is discussed within the context of the analogous 3c/3e- π bonding in the vinoxy radical, CH2CHO. The vinoxy comparison establishes three predictions for the σ symmetry 3c/3e- bond in HEMACS: (1) an umpolung effect that causes the Mo-M interactions to become more covalent as Δχ increases, (2) distortion of the σ bonding and non-bonding orbitals to emphasize Mo-M bonding and de-emphasize Mo-Mo bonding, and (3) an increase in Mo spin population with increasing Mo-M covalency. In agreement with these predictions, we find that the Mo2···M covalency increases with increasing Δχ of the Mo and M atoms (ΔχMo-M increases as M = Cr < Mn < Fe < Co < Ni), an umpolung of the trend predicted in the absence of σ delocalization. We attribute the observed trend in covalency to the decreased energic differential (ΔE) between the heterometal dz2 orbital and the σ bonding molecular orbital of the Mo2 quadruple bond, which serves as an energetically stable, "ligand"-like electron-pair donor to the heterometal ion acceptor. As M is changed from Cr to Ni, the σ bonding and nonbonding orbitals do indeed distort as anticipated, and the spin population of the outer Mo group is increased by at least a factor of 2. These findings provide a predictive framework for multimetallic compounds and advance the current understanding of the electronic structures of molecular heteromultimetallic systems, which can be extrapolated to applications in the context of mixed-metal surface catalysis and multimetallic proteins.

3.
Chem Rev ; 120(5): 2409-2447, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32045223

RESUMEN

Significant progress has been made in the past 10-15 years on the design, synthesis, and properties of multimetallic coordination complexes with heterometallic metal-metal bonds that are paramagnetic. Several general classes have been explored including heterobimetallic compounds, heterotrimetallic compounds of either linear or triangular geometry, discrete molecular compounds containing a linear array of more than three metal atoms, and coordination polymers with a heterometallic metal-metal bonded backbone. We focus in this Review on the synthetic methods employed to access these compounds, their structural features, magnetic properties, and electronic structure. Regarding the metal-metal bond distances, we make use of the formal shortness ratio (FSR) for comparison of bond distances between a broad range of metal atoms of different sizes. The magnetic properties of these compounds can be described using an extension of the Goodenough-Kanamori rules to cases where two magnetic ions interact via a third metal atom. In describing the electronic structure, we focus on the ability (or not) of electrons to be delocalized across heterometallic bonds, allowing for rationalizations and predictions of single-molecule conductance measurements in paramagnetic heterometallic molecular wires.

4.
Inorg Chem ; 57(15): 9354-9363, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30024159

RESUMEN

Clean axial ligand substitution reactions of heterometallic extended metal atom chains (HEMACs) supported by the dpa ligand (dpa = 2,2'-dipyridylamine) have been synthetically challenging due to side reactions that alter the trimetallic core. Following the hypothesis that a heterometallic core containing second-row transition metals would be more robust toward ligand substitution, we report the synthesis of three new heterotrimetallic compounds, Mo2Ni(dpa)4(OTf)2 (1), Mo2Ni(dpa)4(NCS)2 (2), and Mo2Ni(dpa)4(NCSe)2 (3) that are obtained cleanly and in good yield. Compound 1 may be synthesized either directly by reaction of Ni(OTf)2 with Mo2(dpa)4 (4) or indirectly, by reaction of Mo2Ni(dpa)4Cl2 (5) with 2 equiv of TlOTf. Axial ligand substitution on 1 via solutions containing NaNCS or KNCSe afford 2 or 3, respectively. X-ray crystal structures of 1, 2, and 3 present short Mo-Ni distances of 2.458(8)Å /2.47(1) Å, 2.548(1), and 2.546(1), respectively. Density functional theory (DFT) calculations indicate a 3-center 3-electron σ bonding interaction between the Mo2 quadruply bonded core and the Ni in both 1 and 2. These complexes were analyzed by SQUID magnetometry, supporting the presence of a high spin Ni2+ center with S = 1.

5.
Chemistry ; 24(7): 1494-1499, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29124828

RESUMEN

The new heterometallic chain compounds Mo2 Ni(dpa)4 Cl2 (1) and [Mo2 Ni(dpa)4 Cl2 ]OTf (2) (dpa=2,2'-dipyridylamine) have been prepared and studied by crystallography and magnetic susceptibility, among other methods. Oxidation of 1 to 2 removes an electron from the multiply bonded Mo2 unit, consistent with the formulation of 2 containing a (Mo2 )5+ ⋅⋅⋅(Ni)2+ core. While 1 contains an S=1, pseudo-octahedral NiII ion, 2 has an S=3/2 ground state, in which the two NiII unpaired electrons, one in a localized δ-orbital and one in a heavily delocalized σnb -orbital are joined by an unpaired electron in a Mo-Mo δ-orbital. The S=3/2 ground state is persistent to 300 K, evidencing strong ferromagnetic coupling of the Mo2 and Ni spins with J≥150 cm-1 . This ferromagnetic interaction occurs via delocalization of a σnb -electron across all three metal atoms, forcing ferromagnetic alignment of electrons in orthogonal Ni and Mo2 δ-symmetry orbitals. We anticipate that this new means of coupling spins can be used as a design principle for the preparation of new compounds with high spin ground states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA