Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 6(12): 1815-1824, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32254253

RESUMEN

Porous silicon (pSi) is a sponge-like material obtained by electrochemical etching of a crystalline silicon wafer. Due to quantum confinement effects, this material is photoluminescent and this is a fundamental property from the perspective of bioimaging applications. Limitations in nanomedicine to the use of photoluminescent pSi structures are mainly due to optical quenching in an aqueous environment and to the adverse effects of reactive groups introduced by etching procedures. In this work, we exploited an inorganic TiO2 coating of pSi microparticles by Atomic Layer Deposition (ALD) that resulted in optical stability of pSi particles in a biological buffer (e.g. PBS). The use of a rotary reactor allows deposition of a uniform coating on the particles and enables a fine tuning of its thickness. The ALD parameters were optimized and the photoluminescence (PL) of pSi-TiO2 microparticles was stabilized for more than three months without any significant effect on their morphology. The biocompatibility of the coated microparticles was evaluated by analyzing the release of cytokines and superoxide anion (O2 -) by human dendritic cells, which play an essential role in the regulation of inflammatory and immune responses. We demonstrated that the microparticles per se are unable to significantly damage or stimulate human dendritic cells and therefore are suitable candidates for nanomedicine applications. However, a synergistic effect of the microparticles with bacterial products, which are known to stimulate immune-response, was observed, indicating that a condition unfavorable to the use of inorganic nanomaterials in biological systems is the presence of infection diseases. These results, combined with the proved PL stability in biological buffers, open the way for the use of pSi-TiO2 microparticles as promising materials in nanomedicine, but their ability to increase immune cell activation by other agonists should be considered and even exploited.

2.
Sci Rep ; 7(1): 11129, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894262

RESUMEN

Sol-gel transition of carboxylated cellulose nanocrystals has been investigated using rheology, SAXS, NMR and optical spectroscopies to unveil the distinctive roles of ultrasound treatments and addition of various cations. Besides cellulose fiber fragmentation, sonication treatment induces fast gelling of the solution. The gelation is independent of the addition of cations, while the final rheological properties are highly influenced by the type, concentration and sequence of the operations since the cations must be added prior to sonication to produce stiff gels. The gel elastic modulus was found to increase proportionally to the ionic charge rather than the cationic size. In cases where ions were added after sonication, SAXS analysis of the Na+ hydrogel and Ca2+ hydrogel indicated the presence of structurally ordered domains in which water is confined, and 1H-NMR investigation showed the dynamics of water exchange within the hydrogels. Conversely, separated phases containing essentially free water were characteristic of the hydrogels obtained by sonication after Ca2+ addition, confirming that this ion induces irreversible fiber aggregation. The rheological properties of the hydrogels depend on the duration of the ultrasound treatments, enabling the design of programmed materials with tailored energy dissipation response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...