Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(13): 4303-4315, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32098872

RESUMEN

The E-protein transcription factors guide immune cell differentiation, with E12 and E47 (hereafter called E2A) being essential for B-cell specification and maturation. E2A and the oncogenic chimera E2A-PBX1 contain three transactivation domains (ADs), with AD1 and AD2 having redundant, independent, and cooperative functions in a cell-dependent manner. AD1 and AD2 both mediate their functions by binding to the KIX domain of the histone acetyltransferase paralogues CREB-binding protein (CBP) and E1A-binding protein P300 (p300). This interaction is necessary for B-cell maturation and oncogenesis by E2A-PBX1 and occurs through conserved ΦXXΦΦ motifs (with Φ denoting a hydrophobic amino acid) in AD1 and AD2. However, disruption of this interaction via mutation of the KIX domain in CBP/p300 does not completely abrogate binding of E2A and E2A-PBX1. Here, we determined that E2A-AD1 and E2A-AD2 also interact with the TAZ2 domain of CBP/p300. Characterization of the TAZ2:E2A-AD1(1-37) complex indicated that E2A-AD1 adopts an α-helical structure and uses its ΦXXΦΦ motif to bind TAZ2. Whereas this region overlapped with the KIX recognition region, key KIX-interacting E2A-AD1 residues were exposed, suggesting that E2A-AD1 could simultaneously bind both the KIX and TAZ2 domains. However, we did not detect a ternary complex involving E2A-AD1, KIX, and TAZ2 and found that E2A containing both intact AD1 and AD2 is required to bind to CBP/p300. Our findings highlight the structural plasticity and promiscuity of E2A-AD1 and suggest that E2A binds both the TAZ2 and KIX domains of CBP/p300 through AD1 and AD2.


Asunto(s)
Proteína de Unión a CREB/química , Proteína p300 Asociada a E1A/genética , Dominios Proteicos/genética , Factor de Transcripción 3/química , Linfocitos B/química , Linfocitos B/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/ultraestructura , Proteína p300 Asociada a E1A/química , Proteína p300 Asociada a E1A/ultraestructura , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/ultraestructura , Humanos , Mutación/genética , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/ultraestructura , Unión Proteica/genética , Conformación Proteica , Factor de Transcripción 3/genética , Factor de Transcripción 3/ultraestructura
2.
PLoS One ; 12(2): e0171606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28158290

RESUMEN

Clostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31). This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized. NMR-based experiments demonstrated a preference of each module for galacto-configured sugars, including the ability of all three CBM32s to recognize the common mucin monosaccharide GalNAc. X-ray crystal structures of the CpGH31 CBM32s, both in apo form and bound to GalNAc, revealed the finely-tuned molecular strategies employed by these sequentially variable CBM32s in coordinating a common ligand. The data highlight that sequence similarities to previously characterized CBMs alone are insufficient for identifying the molecular mechanism of ligand binding by individual CBMs. Furthermore, the overlapping ligand binding profiles of the three CBMs provide a fail-safe mechanism for the recognition of GalNAc among the dense eukaryotic carbohydrate networks of the colonic mucosa. These findings expand our understanding of ligand targeting by large, multi-modular carbohydrate-active enzymes, and offer unique insights into of the expanding ligand-binding preferences and binding site topologies observed in CBM32s.


Asunto(s)
Clostridium perfringens/enzimología , Clostridium perfringens/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósidos/metabolismo , Carbohidratos , Clostridium perfringens/genética , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósidos/química , Estructura Secundaria de Proteína
3.
J Biol Chem ; 291(37): 19607-17, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27466369

RESUMEN

Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.


Asunto(s)
Dictyostelium/enzimología , Cadenas Ligeras de Miosina/química , Proteínas Protozoarias/química , Secuencias de Aminoácidos , Dictyostelium/genética , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Dominios Proteicos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
J Biol Chem ; 289(24): 17030-42, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24790102

RESUMEN

Dictyostelium discoideum MyoB is a class I myosin involved in the formation and retraction of membrane projections, cortical tension generation, membrane recycling, and phagosome maturation. The MyoB-specific, single-lobe EF-hand light chain MlcB binds the sole IQ motif of MyoB with submicromolar affinity in the absence and presence of Ca(2+). However, the structural features of this novel myosin light chain and its interaction with its cognate IQ motif remain uncharacterized. Here, we describe the NMR-derived solution structure of apoMlcB, which displays a globular four-helix bundle. Helix 1 adopts a unique orientation when compared with the apo states of the EF-hand calcium-binding proteins calmodulin, S100B, and calbindin D9k. NMR-based chemical shift perturbation mapping identified a hydrophobic MyoB IQ binding surface that involves amino acid residues in helices I and IV and the functional N-terminal Ca(2+) binding loop, a site that appears to be maintained when MlcB adopts the holo state. Complementary mutagenesis and binding studies indicated that residues Ile-701, Phe-705, and Trp-708 of the MyoB IQ motif are critical for recognition of MlcB, which together allowed the generation of a structural model of the apoMlcB-MyoB IQ complex. We conclude that the mode of IQ motif recognition by the novel single-lobe MlcB differs considerably from that of stereotypical bilobal light chains such as calmodulin.


Asunto(s)
Dictyostelium/metabolismo , Cadenas Ligeras de Miosina/química , Miosina Tipo IIB no Muscular/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Dictyostelium/química , Motivos EF Hand , Datos de Secuencia Molecular , Mutación , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo
5.
Nucleic Acids Res ; 42(11): 7370-82, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24682819

RESUMEN

The E-protein transcription factors play essential roles in lymphopoiesis, with E12 and E47 (hereafter called E2A) being particularly important in B cell specification and maturation. The E2A gene is also involved in a chromosomal translocation that results in the leukemogenic oncoprotein E2A-PBX1. The two activation domains of E2A, AD1 and AD2, display redundant, independent, and cooperative functions in a cell-dependent manner. AD1 of E2A functions by binding the transcriptional co-activator CBP/p300; this interaction is required in oncogenesis and occurs between the conserved ϕ-x-x-ϕ-ϕ motif in AD1 and the KIX domain of CBP/p300. However, co-activator recruitment by AD2 has not been characterized. Here, we demonstrate that the first of two conserved ϕ-x-x-ϕ-ϕ motifs within AD2 of E2A interacts at the same binding site on KIX as AD1. Mutagenesis uncovered a correspondence between the KIX-binding affinity of AD2 and transcriptional activation. Although AD2 is dispensable for oncogenesis, experimentally increasing the affinity of AD2 for KIX uncovered a latent potential to mediate immortalization of primary hematopoietic progenitors by E2A-PBX1. Our findings suggest that redundancy between the two E2A activation domains with respect to transcriptional activation and oncogenic function is mediated by binding to the same surface of the KIX domain of CBP/p300.


Asunto(s)
Factor de Transcripción 3/química , Activación Transcripcional , Factores de Transcripción p300-CBP/química , Sitios de Unión , Células de la Médula Ósea/metabolismo , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Factor de Transcripción 3/metabolismo , Factores de Transcripción p300-CBP/metabolismo
6.
J Mol Biol ; 426(4): 869-80, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24326248

RESUMEN

Carbohydrate-binding modules (CBMs) are ancillary modules commonly associated with carbohydrate-active enzymes (CAZymes) that function to mediate the adherence of the parent enzyme to its carbohydrate substrates. CBM family 32 (CBM32) is one of the most diverse CBM families, whose members are commonly found in bacterial CAZymes that modify eukaryotic glycans. One such example is the putative µ-toxin, CpGH84A, of the family 84 glycoside hydrolases, which comprises an N-terminal putative ß-N-acetylglucosaminidase catalytic module and four tandem CBM32s. Here, we report a unique mode of galactose recognition by the first CBM32, CBM32-1 from CpGH84A. Solution NMR-based analyses of CpGH84A CBM32-1 indicate a divergent subset of residues, located in ordered loops at the apex of the CBM, conferring specificity for the galacto-configured sugars galactose, GalNAc, and LacNAc that differs from those of the canonical galactose-binding CBM32s. This study showcases the impressive variability in ligand binding by this CBM family and offers insight into the growing role of these modules in the interaction of CAZymes with eukaryotic glycans.


Asunto(s)
Galactosa/metabolismo , Hialuronoglucosaminidasa/química , Hialuronoglucosaminidasa/metabolismo , Acetilgalactosamina/metabolismo , Secuencia de Aminoácidos , Amino Azúcares/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clostridium perfringens/enzimología , Hialuronoglucosaminidasa/genética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Especificidad por Sustrato
7.
FEBS Open Bio ; 3: 398-405, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24251102

RESUMEN

The cellulosome is a large extracellular multi-enzyme complex that facilitates the efficient hydrolysis and degradation of crystalline cellulosic substrates. During the course of our studies on the cellulosome of the rumen bacterium Ruminococcus flavefaciens, we focused on the critical ScaA dockerin (ScaADoc), the unique dockerin that incorporates the primary enzyme-integrating ScaA scaffoldin into the cohesin-bearing ScaB adaptor scaffoldin. In the absence of a high-resolution structure of the ScaADoc module, we generated a computational model, and, upon its analysis, we were surprised to discover a putative stacking interaction between an N-terminal Trp and a C-terminal Pro, which we termed intramolecular clasp. In order to verify the existence of such an interaction, these residues were mutated to alanine. Circular dichroism spectroscopy, intrinsic tryptophan and ANS fluorescence, and NMR spectroscopy indicated that mutation of these residues has a destabilizing effect on the functional integrity of the Ca(2+)-bound form of ScaADoc. Analysis of recently determined dockerin structures from other species revealed the presence of other well-defined intramolecular clasps, which consist of different types of interactions between selected residues at the dockerin termini. We propose that this thematic interaction may represent a major distinctive structural feature of the dockerin module.

8.
J Biol Chem ; 288(23): 16827-16838, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23580648

RESUMEN

The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nM) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Subunidades de Proteína/química , Ruminococcus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosa/química , Celulosa/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Cohesinas
9.
FEBS Lett ; 587(1): 30-6, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23195689

RESUMEN

Phylogenetic analysis of known dockerins in Ruminococcus flavefaciens revealed a novel subtype, type-III, in the scaffoldin proteins, ScaA, ScaB, ScaC and ScaE. In this study, we explored the Ca²âº-binding properties of the type-III dockerin from the ScaA scaffoldin (ScaADoc) using a battery of structural and biophysical approaches including circular dichroism spectroscopy, isothermal titration calorimetry, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. Despite the lack of a second canonical Ca²âº-binding loop, the behaviour of ScaADoc is similar with respect to other dockerin protein modules in terms of its responsiveness to Ca²âº and affinity for the cohesin from the ScaB scaffoldin. Our results highlight the robustness of dockerin modules and how their Ca²âº-binding properties can be exploited in the construction of designer cellulosomes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Dominios y Motivos de Interacción de Proteínas , Ruminococcus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/aislamiento & purificación , Rastreo Diferencial de Calorimetría , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Celulosomas/química , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas Cromosómicas no Histona/metabolismo , Dicroismo Circular , Motivos EF Hand , Interacciones Hidrofóbicas e Hidrofílicas , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Filogenia , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Propiedades de Superficie , Cohesinas
10.
J Mol Biol ; 425(2): 334-49, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23154168

RESUMEN

Streptococcus pneumoniae is a serious human pathogen that presents on its surface numerous proteins involved in the host-bacterium interaction. The carbohydrate-active enzymes are particularly well represented among these surface proteins, and many of these are known virulence factors, highlighting the importance of carbohydrate processing by this pathogen. StrH is a surface-attached exo-ß-D-N-acetylglucosaminidase that cooperates with the sialidase NanA and the ß-galactosidase BgaA to sequentially degrade the nonreducing terminal arms of complex N-linked glycans. This enzyme is a large multi-modular protein that is notable for its tandem N-terminal family GH20 catalytic modules, whose individual X-ray crystal structures were recently reported. StrH also contains C-terminal tandem G5 modules, which are uncharacterized. Here, we report the NMR-determined solution structure of the first G5 module in the tandem, G5-1, which along with the X-ray crystal structures of the GH20 modules was used in conjunction with small-angle X-ray scattering to construct a pseudo-atomic model of full-length StrH. The results reveal a model in which StrH adopts an elongated conformation that may project the catalytic modules away from the surface of the bacterium to a distance of up to ~250 Å.


Asunto(s)
Streptococcus pneumoniae/enzimología , beta-N-Acetilhexosaminidasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato , beta-N-Acetilhexosaminidasas/metabolismo
11.
J Exp Med ; 209(13): 2339-50, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23209312

RESUMEN

The endogenous phospholipid lysophosphatidic acid (LPA) regulates fundamental cellular processes such as proliferation, survival, motility, and invasion implicated in homeostatic and pathological conditions. Hence, delineation of the full range of molecular mechanisms by which LPA exerts its broad effects is essential. We report avid binding of LPA to the receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, and mapping of the LPA binding site on this receptor. In vitro, RAGE was required for LPA-mediated signal transduction in vascular smooth muscle cells and C6 glioma cells, as well as proliferation and migration. In vivo, the administration of soluble RAGE or genetic deletion of RAGE mitigated LPA-stimulated vascular Akt signaling, autotaxin/LPA-driven phosphorylation of Akt and cyclin D1 in the mammary tissue of transgenic mice vulnerable to carcinogenesis, and ovarian tumor implantation and development. These findings identify novel roles for RAGE as a conduit for LPA signaling and suggest targeting LPA-RAGE interaction as a therapeutic strategy to modify the pathological actions of LPA.


Asunto(s)
Lisofosfolípidos/metabolismo , Músculo Liso Vascular/metabolismo , Neoplasias/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Línea Celular Tumoral , Ciclina D1/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
12.
Blood ; 120(19): 3968-77, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22972988

RESUMEN

E-proteins are critical transcription factors in B-cell lymphopoiesis. E2A, 1 of 3 E-protein-encoding genes, is implicated in the induction of acute lymphoblastic leukemia through its involvement in the chromosomal translocation 1;19 and consequent expression of the E2A-PBX1 oncoprotein. An interaction involving a region within the N-terminal transcriptional activation domain of E2A-PBX1, termed the PCET motif, which has previously been implicated in E-protein silencing, and the KIX domain of the transcriptional coactivator CBP/p300, critical for leukemogenesis. However, the structural details of this interaction remain unknown. Here we report the structure of a 1:1 complex between PCET motif peptide and the KIX domain. Residues throughout the helical PCET motif that contact the KIX domain are important for both binding KIX and bone marrow immortalization by E2A-PBX1. These results provide molecular insights into E-protein-driven differentiation of B-cells and the mechanism of E-protein silencing, and reveal the PCET/KIX interaction as a therapeutic target for E2A-PBX1-induced leukemia.


Asunto(s)
Proteínas de Homeodominio/química , Leucemia/genética , Proteínas de Fusión Oncogénica/química , Factores de Transcripción p300-CBP/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transformación Celular Neoplásica/genética , Secuencia Conservada , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutación , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Unión Proteica/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción p300-CBP/metabolismo
13.
Biomol NMR Assign ; 6(2): 139-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21912839

RESUMEN

The Gram-positive anaerobe Clostridium perfringens is an opportunistic bacterial pathogen that secretes a battery of enzymes involved in glycan degradation. These glycoside hydrolases are thought to be involved in turnover of mucosal layer glycans, and in the spread of major toxins commonly associated with the development of gastrointestinal diseases and gas gangrene in humans. These enzymes employ multi-modularity and carbohydrate-binding function to degrade extracellular eukaryotic host sugars. Here, we report the full (1)H, (15)N and (13)C chemical shift resonance assignments of the first family 32 carbohydrate-binding module from NagH, a secreted family 84 glycoside hydrolase.


Asunto(s)
Proteínas Bacterianas/química , Clostridium perfringens/metabolismo , Resonancia Magnética Nuclear Biomolecular , Protones , Receptores de Superficie Celular/química , Isótopos de Carbono , Isótopos de Nitrógeno , Estructura Terciaria de Proteína
14.
Biochim Biophys Acta ; 1819(5): 375-81, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22207202

RESUMEN

E-proteins are basic helix-loop-helix transcription factors that function in cell type specification. The gene E2A encodes two E-proteins, E12 and E47, which are required in B-lymphopoiesis. E2A proteins can interact directly with the transcriptional co-activators and lysine acetyltranferases (KATs) CBP, p300 and PCAF to induce target gene transcription. Prior investigations have shown that the E2A-encoded isoform E2-5 is acetylated by CBP, p300 or PCAF in vitro or in vivo. However, E2-5 lacks the important N-terminal activation domain AD1. Furthermore, the acetylated residues in E-proteins have not been mapped, and the functional consequences of acetylation are largely unknown. Here, we use mutagenesis to show that a lysine residue at position 34 within AD1 of E12/E47 is acetylated by CBP/p300 and PCAF. Lys34 lies adjacent to a conserved helical LXXLL motif that interacts directly with the KIX domain of CBP/p300. We show that acetylation at Lys34 increases the affinity of AD1 for the KIX domain and enhances AD1-driven transcriptional induction. Our results illustrate for the first time that AD1 can both recruit, and be acetylated by, KATs and that KAT recruitment may promote transcriptional induction in part through acetylation of AD1 itself.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteína de Unión a CREB , Lisina , Factores de Transcripción p300-CBP , Acetilación , Secuencia de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/genética , Lisina/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Activación Transcripcional , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
15.
Cell Host Microbe ; 10(2): 158-64, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21843872

RESUMEN

By sequestering manganese and zinc, the neutrophil protein calprotectin plays a crucial role in host defense against bacterial and fungal pathogens. However, the essential processes disrupted by calprotectin remain unknown. We report that calprotectin enhances the sensitivity of Staphylococcus aureus to superoxide through inhibition of manganese-dependent bacterial superoxide defenses, thereby increasing superoxide levels within the bacterial cell. Superoxide dismutase activity is required for full virulence in a systemic model of S. aureus infection, and disruption of staphylococcal superoxide defenses by calprotectin augments the antimicrobial activity of neutrophils promoting in vivo clearance. Calprotectin mutated in two transition metal binding sites and therefore defective in binding manganese and zinc does not inhibit microbial growth, unequivocally linking the antimicrobial properties of calprotectin to metal chelation. These results suggest that calprotectin contributes to host defense by rendering bacterial pathogens more sensitive to host immune effectors and reducing bacterial growth.


Asunto(s)
Complejo de Antígeno L1 de Leucocito/inmunología , Neutrófilos/inmunología , Staphylococcus aureus/enzimología , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Animales , Antibacterianos/inmunología , Modelos Animales de Enfermedad , Masculino , Manganeso/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Zinc/metabolismo
16.
J Biomol NMR ; 49(1): 27-38, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21161328

RESUMEN

The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution - especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.


Asunto(s)
Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Algoritmos , Conformación Proteica , Programas Informáticos
17.
Structure ; 18(10): 1342-52, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20947022

RESUMEN

The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor involved in inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling events upon binding of a variety of ligands, such as glycated proteins, amyloid-ß, HMGB1, and S100 proteins. The X-ray crystal structure of the VC1 ligand-binding region of the human RAGE ectodomain was determined at 1.85 Å resolution. The VC1 ligand-binding surface was mapped onto the structure from titrations with S100B monitored by heteronuclear NMR spectroscopy. These NMR chemical shift perturbations were used as input for restrained docking calculations to generate a model for the VC1-S100B complex. Together, the arrangement of VC1 molecules in the crystal and complementary biochemical studies suggest a role for self-association in RAGE function. Our results enhance understanding of the functional outcomes of S100 protein binding to RAGE and provide insight into mechanistic models for how the receptor is activated.


Asunto(s)
Ligandos , Estructura Terciaria de Proteína , Receptores Inmunológicos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/química , Proteínas S100/metabolismo , Homología de Secuencia de Aminoácido
19.
Eur J Pharmacol ; 625(1-3): 73-83, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19835859

RESUMEN

Correlations exist between the abundance of S100 proteins and disease pathologies. Indeed, this is evidenced by the heterodimeric S100 protein complex S100A8/A9 which has been shown to be involved in inflammatory and neoplastic disorders. However, S100A8/A9 appears as a Janus-faced molecule in this context. On the one hand, it is a powerful apoptotic agent produced by immune cells, making it a very fascinating tool in the battle against cancer. It spears the risk to induce auto-immune response and may serve as a lead compound for cancer-selective therapeutics. In contrast, S100A8/A9 expression in cancer cells has also been associated with tumor development, cancer invasion or metastasis. Clearly, there is a dichotomy and future investigations into the role of S100A8/A9 in cancer biology need to consider both sides of the same coin.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias/fisiopatología , Animales , Apoptosis/fisiología , Calgranulina A/genética , Calgranulina B/genética , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Invasividad Neoplásica/fisiopatología , Metástasis de la Neoplasia/fisiopatología , Neoplasias/terapia
20.
J Mol Biol ; 381(5): 1202-12, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18602403

RESUMEN

The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the mu-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the mu-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the mu-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens.


Asunto(s)
Toxinas Bacterianas/química , Celulosa/metabolismo , Clostridium perfringens/química , Secuencia de Aminoácidos , Calcio/farmacología , Clostridium perfringens/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...