Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Infection ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177883

RESUMEN

OBJECTIVES: Tick-borne encephalitis (TBE) is an infection caused by the tick-borne encephalitis virus (TBEV) that can lead to symptoms of central nervous system inflammation. There are five subtypes of TBEV, three of which - European, Siberian and Far Eastern - occur in Europe. As it is thought that different subtype infections exhibit varying clinical courses and outcomes, serological differentiation of the virus subtypes is clearly important. However, to date, this has proved difficult to achieve. METHODS: An ELISA format was developed based on TBE virus NS1 antigen against the European, Siberian and Far Eastern subtype. The three NS1 antigens were biotechnologically produced in a human cell line and used for ELISA coating. Sera from German (European subtype) and Russian (Siberian and/or Far Eastern subtypes) TBE patients with positive TBEV IgG were used to test the reactivity against these three NS1 antigens. RESULTS: Testing of 23 German and 32 Russian TBEV IgG-positive sera showed that the ELISA was able to differentiate between TBEV European subtype and TBEV Siberian and Far Eastern subtype infections. CONCLUSIONS: In geographical areas where two or more TBEV subtype infections can occur, the NS1-IgG ELISA developed here constitutes an important diagnostic tool to differentiate between European subtype infections and Siberian/Far Eastern subtype infections and to use the new assay for epidemiological studies to clarify the importance of particular subtype infections in an area. Consequently, it may help to better describe and anticipate the clinical courses and outcomes of particular TBEV subtype infections.

2.
Ecol Evol ; 14(8): e70163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165543

RESUMEN

Tick-borne encephalitis (TBE) virus is considered the medically most important arthropod-borne virus in Europe. Although TBE is endemic throughout central Europe, ticks and rodents determine its maintenance in small, difficult-to-assess, natural foci. We investigated the interrelation between the population genetics of the main TBE virus (TBEV) vector tick (Ixodes ricinus), the most important reservoir host (Myodes glareolus, syn. Clethrionomys glareolus), and TBEV. Rodents and ticks were sampled on 15 sites within an exploratory study area, which has been screened regularly for TBEV occurrence in ticks for more than 10 years. On all 15 sites, ticks and bank voles were sampled, screened for TBEV presence via serology and RT-PCR, and genetically examined. Moreover, TBEV isolates derived from these analyses were sequenced. In long-term TBEV foci bank vole populations show extraordinary genetic constitutions, leading to a particular population structure, whereas ticks revealed a panmictic genetic structure overall sampling sites. Landscape genetics and habitat connectivity modeling (analysis of isolation by resistance) showed no landscape-related barriers explaining the genetic structure of the bank vole populations. The results suggest that bank voles do not simply serve as TBEV reservoirs, but their genetic composition appears to have a significant influence on establishing and maintaining long-term natural TBEV foci, whereas the genetic structure of TBEV's main vector I. ricinus does not play an important role in the sustainability of long-term TBEV foci. A thorough investigation of how and to which extent TBEV and M. glareolus genetics are associated is needed to further unravel the underlying mechanisms.

3.
Parasitol Res ; 123(7): 268, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992328

RESUMEN

This study describes the first detection of Ixodes ventalloi in Slovakia. Two engorged females of I. ventalloi were collected from Dunnocks (Prunella modularis) captured in eastern Slovakia. The identification of females was based on morphological and molecular 16S rRNA gene features. Phylogenetic analysis revealed a classification of the females into distinct genogroups. Moreover, comparative morphological analysis highlighted variations between the two females, particularly in the curvature of the auriculae, the shape of coxa I, and the internal spur. These findings suggest the potential for varied phenotypes of I. ventalloi correlated with their genogroups. Nonetheless, I. ventalloi population establishment within Slovakia necessitates further investigation through flagging or drag sampling.


Asunto(s)
Ixodes , Filogenia , ARN Ribosómico 16S , Animales , Eslovaquia , Ixodes/clasificación , Ixodes/anatomía & histología , Ixodes/genética , Ixodes/fisiología , Femenino , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria , Enfermedades de las Aves/parasitología , Galliformes/parasitología , ADN Ribosómico/genética , Análisis por Conglomerados
4.
Ticks Tick Borne Dis ; 15(6): 102361, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880004

RESUMEN

The genus Amblyomma contains the highest percentage of reptile-associated ticks, and comprises approximately nine subgenera. One of these subgenera is Adenopleura, which also encompasses Amblyomma javanense, and its type species Amblyomma compressum. This study describes a new Amblyomma species associated with Bengal monitor lizards (Varanus bengalensis) based on morphology and its mitogenome in Khyber Pakhtunkhwa, Pakistan. Reptiles belonging to different genera were examined for Amblyomma ticks and only the monitor lizard was infested with ticks in the District Bajaur. Collected Amblyomma cf. javanense ticks were analyzed and formally described as a new species. Overall, 57 A. cf. javanense ticks were collected on monitor lizards (4/27) with a 15% prevalence of infestation, 2.1 mean abundance, and 14.3 mean intensity. Ticks comprised males (n = 23, 40%), females (n = 14, 25%) and nymphs (n = 20, 35%), while no larvae were found. BLAST analysis of A. cf. javanense sequences showed the following maximum identities; 98.25% with undetermined Amblyomma species based on 12S rRNA, 96.07% with A. javanense based on 16S rRNA, 99.56% and 90.95% with an Amblyomma sp. and A. javanense, respectively, based on ITS2. Moreover, the mitochondrial genome of A. cf. javanense showed maximum identities of 80.75%, 80.48% and 79.42% with Amblyomma testudinarium, A. javanense, and Amblyomma sp., respectively. The phylogenetic analysis of A. cf. javanense revealed that its 12S rRNA and 16S rRNA are closely related to an Amblyomma sp. and A. javanense, respectively, from Sri Lanka, its ITS2 is closely related to A. javanense from China and an Amblyomma sp. from Sri Lanka, and its mitogenome is closely related to A. javanense and Amblyomma sp. from China. The pairwise distance analysis resulted in divergence of 0-1.71% (12S rRNA), 0-17.5% (16S rRNA), 0-9.1% (ITS2) and 0-20.5% (mitochondrial genome). We also contributed the full-length mitochondrial genome sequence of A. compressum and showed that this species does not share a most recent common ancestor with A. javanense. As the subgenus Adenopleura is paraphyletic, this study could help to understand the systematics and phylogeny of this taxon.

5.
Parasitology ; : 1-9, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767137

RESUMEN

Ixodid ticks are obligate blood-feeding arthropods and important vectors of pathogens. In Mallorca, almost no data on the tick fauna are available. Herein, we investigated ticks and tick-borne pathogens in ticks collected from dogs, a cat and humans in Mallorca as result of a citizen science project. A total of 91 ticks were received from German tourists and residents in Mallorca. Ticks were collected from March to October 2023 from dogs, cat and humans, morphologically and genetically identified and tested for pathogens by PCRs. Six tick species could be identified: Ixodes ricinus (n = 2), Ixodes ventalloi (n = 1), Hyalomma lusitanicum (n = 7), Hyalomma marginatum (n = 1), Rhipicephalus sanguineus s.l. (n = 71) and Rhipicephalus pusillus (n = 9). Rhipicephalus sanguineus s.l. adults were collected from dogs and four females from a cat and the 16S rDNA sequences identified it as Rh. sanguineus s.s. Hyalomma lusitanicum was collected from 1 human, 1 dog and 5 specimens were collected from the ground in the community of Santanyi, together with one H. marginatum male. This is the first report of Hyalomma marginatum in Mallorca. Both I. ricinus were collected from humans and I. ventalloi female was collected from a dog. All ticks tested negative for Anaplasma phagocytophilum, Coxiella spp., Francisella spp., and piroplasms. In 32/71 (45%) specimens of Rh. sanguineus s.s., Rickettsia spp. could be detected and in 18/32 (56.2%) sequenced tick DNAs R. massiliae was identified. Ixodes ventalloi female and both I. ricinus tested positive in the screening PCR, but the sequencing for the identification of the Rickettsia sp. failed.

6.
Parasitology ; : 1-17, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623697

RESUMEN

Ticks are composed of 3 extant families (Argasidae, Ixodidae and Nuttalliellidae) and 2 extinct families (Deinocrotonidae and Khimairidae). The Nuttalliellidae possess one extant species (Nuttalliella namaqua) limited to the Afrotropic region. A basal relationship to the hard and soft tick families and its limited distribution suggested an origin for ticks in the Afrotropics. The Deinocrotonidae has been found in Burmese amber from Myanmar and Iberian amber from Spain, suggesting a wider distribution of the lineage composed of Deinocrotonidae and Nuttalliellidae. The current study describes 8 fossils from mid-Cretaceous (ca. 100 Ma) Burmese amber: 2 Deinocroton species (Deinocroton bicornis sp. nov.; Deinocroton lacrimus sp. nov.), 5 Nuttalliella species (Nuttalliella gratae sp. nov., Nuttalliella tuberculata sp. nov., Nuttalliella placaventrala sp. nov., Nuttalliella odyssea sp. nov., Nuttalliella tropicasylvae sp. nov.) and a new genus and species (Legionaris nov. gen., Legionaris robustus sp. nov.). The argument is advanced that Deinocroton do not warrant its own family, but forms part of the Nuttalliellidae comprising 3 genera, Deinocroton, Legionaris nov. gen. and Nuttalliella). Affinities of Burmese tick fossils to the Australasian region, specifically related to rifting of the Burma terrane from northern Australia ~150 million years ago, suggest that Nuttalliella had a much wider distribution than its current limited distribution. The distribution of Nuttalliella likely stretched from Africa over Antarctica and much of Australia, suggesting that extant members of this family may still be found in Australia. Considerations for the geographic origins of ticks conclude that an Afrotropic origin can as yet not be discarded.

7.
Parasitology ; : 1-10, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586995

RESUMEN

Two major families exist in ticks, the Argasidae and Ixodidae. The Argasidae comprise 2 sub-families, Argasinae and Ornithodorinae. The placement into subfamilies illuminate differences in morphological and molecular systematics and is important since it provides insight into evolutionary divergence within this family. It also identifies fundamental gaps in our understanding of argasid evolution that provide directions for future research. Molecular systematics based on mitochondrial genomics and 18S/28S ribosomal RNA confirmed the placement of various genera and subgenera into the Argasinae: Argas (including Argas and Persicargas), Navis, Ogadenus, Otobius lagophilus, Proknekalia, Secretargas and the Ornithodorinae: Alectorobius, Antricola (including Antricola and Parantricola), Carios, Chiropterargas, Nothoaspis, Ornithodoros (including Microargas, Ornamentum, Ornithodoros sensu strictu, Pavlovskyella), Otobius sensu strictu, Reticulinasus and Subparmatus. The position of Alveonasus remains controversial since traditional taxonomy placed it in the Ornithodorinae, while cladistic and limited molecular analysis placed it in the Argasinae. The current study aimed to resolve the systematic position of Alveonasus using mitochondrial genomic and 18S/28S ribosomal RNA systematics by sequencing the type species Alveonasus lahorensis from Pakistan. In addition, the mitochondrial genomes for Argas reflexus and Alectorobius kelleyi are reported from Germany and the USA, respectively. The systematic data unambiguously place Alveonasus in the Argasinae and also suggest that Alveonasus may be another paraphyletic genus.

8.
Viruses ; 16(4)2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675977

RESUMEN

(1) Background: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia, although effective vaccines are available. Caused by the tick-borne encephalitis virus (TBEV, syn. Orthoflavivirus encephalitidis), in Europe, it is transmitted by ticks like Ixodes ricinus and Dermacentor reticulatus. TBEV circulates in natural foci, making it endemic to specific regions, such as southern Germany and northeastern Poland. Our study aimed to identify new TBEV natural foci and genetically characterize strains in ticks in previously nonendemic areas in Eastern Germany and Western Poland. (2) Methods: Ticks were collected from vegetation in areas reported by TBE patients. After identification, ticks were tested for TBEV in pools of a maximum of 10 specimens using real-time RT-PCR. From the positive TBEV samples, E genes were sequenced. (3) Results: Among 8400 ticks from 19 sites, I. ricinus (n = 4784; 56.9%) was predominant, followed by D. reticulatus (n = 3506; 41.7%), Haemaphysalis concinna (n = 108; 1.3%), and I. frontalis (n = 2; <0.1%). TBEV was detected in 19 pools originating in six sites. The phylogenetic analyses revealed that TBEV strains from Germany and Poland clustered with other German strains, as well as those from Finland and Estonia. (4) Conclusions: Although there are still only a few cases are reported from these areas, people spending much time outdoors should consider TBE vaccination.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Filogenia , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/clasificación , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Animales , Polonia , Alemania/epidemiología , Encefalitis Transmitida por Garrapatas/virología , Encefalitis Transmitida por Garrapatas/epidemiología , Humanos , Ixodes/virología
9.
J Clin Virol ; 171: 105658, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38447459

RESUMEN

BACKGROUND: Zoonotic Borna disease virus 1 (BoDV-1) causes fatal encephalitis in humans and animals. Subsequent to the detection of two paediatric cases in a Bavarian municipality in Germany within three years, we conducted an interdisciplinary One Health investigation. We aimed to explore seroprevalence in a local human population with a risk for BoDV-1 exposure as well as viral presence in environmental samples from local sites and BoDV-1 prevalence within the local small mammal population and its natural reservoir, the bicoloured white-toothed shrew (Crocidura leucodon). METHODS: The municipality's adult residents participated in an anonymised sero-epidemiological study. Potential risk factors and clinical symptoms were assessed by an electronic questionnaire. Small mammals, environmental samples and ticks from the municipality were tested for BoDV-1-RNA. Shrew-derived BoDV-1-sequences together with sequences of the two human cases were phylogenetically analysed. RESULTS: In total, 679 citizens participated (response: 41 %), of whom 38 % reported shrews in their living environment and 19 % direct shrew contact. No anti-BoDV-1 antibodies were detected in human samples. BoDV-1-RNA was also undetectable in 38 environmental samples and 336 ticks. Of 220 collected shrews, twelve of 40 C. leucodon (30%) tested BoDV-1-RNA-positive. BoDV-1-sequences from the previously diagnosed two paediatric patients belonged to two different subclades, that were also present in shrews from the municipality. INTERPRETATION: Our data support the interpretation that human BoDV-1 infections are rare even in endemic areas and primarily manifest as severe encephalitis. Sequence analysis linked both previous paediatric human infections to the local shrew population, but indicated independent infection sources. FUNDING: The project was partly financed by funds of the German Federal Ministry of Education and Research (grant numbers: 01KI2005A, 01KI2005C, 01KI1722A, 01KI1722C, 01KI2002 to MaBe, DR, RGU, DT, BS) as well as by the ReForM-A programme of the University Hospital Regensburg (to MaBa) and by funds of the Bavarian State Ministry of Health, Care and Prevention, project "Zoonotic Bornavirus Focal Point Bavaria - ZooBoFo" (to MaBa, MaBe, BS, MMB, DR, PS, RGU).


Asunto(s)
Enfermedad de Borna , Virus de la Enfermedad de Borna , Encefalitis , Salud Única , Animales , Humanos , Niño , Virus de la Enfermedad de Borna/genética , Enfermedad de Borna/epidemiología , Musarañas/genética , Estudios Seroepidemiológicos , ARN Viral/genética , Alemania/epidemiología
10.
Parasit Vectors ; 17(1): 70, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374119

RESUMEN

BACKGROUND: Hyalomma marginatum and H. rufipes are two-host tick species, which are mainly distributed in southern Europe, Africa to central Asia but may also be found in Central and Northern Europe through introduction by migratory birds. METHODS: Ticks were collected while feeding or crawling on animals and humans, or from the environment, in different regions in Germany, between 2019 and 2021 in a citizen science study and from 2022 to 2023 in the wake of this study. RESULTS: From 2019 to 2023, a total of 212 Hyalomma adult ticks were detected in Germany. This included 132 H. marginatum and 43 H. rufipes ticks sent to research institutions and 37 photographic records that were only identified to genus level. The number of detected ticks varied over the years, with the highest number of 119 specimens recorded in 2019, followed by 57 in 2020. Most of the specimens were collected from horses, while some were collected from other animals, humans or found crawling on human clothes or other objects inside or outside houses. The screening of 175 specimens for Crimean-Congo hemorrhagic fever virus and of 132 specimens for Babesia/Theileria spp. by PCR gave negative results, while human-pathogenic Rickettsia were detected in 44% (77/175) of the total samples. Subsequent amplicon sequencing and phylogenetic analysis of representative samples determined the species of 41 Rickettsia aeschlimannii and one R. slovaca sequences. CONCLUSIONS: Analysis of climatic factors indicated a significantly higher probability of Hyalomma occurrence at locations with higher average spring temperature during the years 2019 and 2020 compared to randomly generated pseudo-absence locations. Dry and hot conditions probably facilitated Hyalomma nymphs' survival and molting into adults during these years.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Ixodidae , Garrapatas , Humanos , Animales , Caballos , Muda , Filogenia , Ixodidae/microbiología , Garrapatas/microbiología , Alemania/epidemiología , Calor
11.
Parasitol Res ; 123(2): 120, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300369

RESUMEN

We report the finding of five nymphs and three adult ticks attached to German tourists while traveling the American continents. All eight specimens were morphologically identified and confirmed genetically using the 16S rRNA gene and screened for Rickettsia spp. infections. Five tick species were identified: one Amblyomma mixtum nymph from Ecuador, one Amblyomma varium nymph from Colombia, three Amblyomma coelebs nymphs from Costa Rica, one Amblyomma americanum male from the USA, one Dermacentor andersoni female and one D. andersoni male from Canada. Tick-borne microorganisms screening using the pan-Rickettsia-PCR resulted in two positive and six negative ticks. The A. mixtum nymph was positive for Rickettsia amblyommatis, while the D. andersoni female was positive for Rickettsia peacockii.


Asunto(s)
Garrapatas , Animales , Femenino , Humanos , Masculino , Amblyomma , Ninfa , ARN Ribosómico 16S/genética , Garrapatas/clasificación
12.
Exp Appl Acarol ; 91(1): 123-132, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37552406

RESUMEN

Amblyomma species are non-endemic ticks in Egypt, which have been recorded from imported animals. This study was carried out in 2022 to monitor Amblyomma spp. from dromedary camels, cattle, and snakes in Egypt. During this study, 400 camels, 200 cattle, and two snakes (Pythonidae) were inspected for tick infestation. Collected specimens were identified based on morphological characters and confirmed by phylogenetic analysis of the 12S rRNA gene. Camels were infested by adult specimens of Amblyomma variegatum and Amblyomma lepidum, but no Amblyomma spp. were collected from cattle. Amblyomma variegatum showed high genetic similarity to other A. variegatum from Guinea-Bissau and São Tomé (> 99.99%), and A. lepidum showed high genetic similarity to other A. lepidum from Israel and Sudan (99.99%). Amblyomma latum is recorded in Egypt from the ball python snake for the first time and showed high genetic similarity with South African A. latum (99.87%).


Asunto(s)
Boidae , Enfermedades de los Bovinos , Ixodidae , Lagartos , Infestaciones por Garrapatas , Bovinos , Animales , Ixodidae/genética , Amblyomma , Egipto , Filogenia , Camelus , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria
13.
Int J Parasitol ; 53(13): 751-761, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37516335

RESUMEN

Ticks are important vectors of human and animal pathogens, but many questions remain unanswered regarding their taxonomy. Molecular sequencing methods have allowed research to start understanding the evolutionary history of even closely related tick species. Ixodes inopinatus is considered a sister species and highly similar to Ixodes ricinus, an important vector of many tick-borne pathogens in Europe, but identification between these species remains ambiguous with disagreement on the geographic extent of I. inopinatus. In 2018-2019, 1583 ticks were collected from breeding great tits (Parus major) in southern Germany, of which 45 were later morphologically identified as I. inopinatus. We aimed to confirm morphological identification using molecular tools. Utilizing two genetic markers (16S rRNA, TROSPA) and whole genome sequencing of specific ticks (n = 8), we were able to determine that German samples, morphologically identified as I. inopinatus, genetically represent I. ricinus regardless of previous morphological identification, and most likely are not I. ricinus/I. inopinatus hybrids. Further, our results showed that the entire mitochondrial genome, let alone singular mitochondrial genes (i.e., 16S), is unable to distinguish between I. ricinus and I. inopinatus. Our results suggest that I. inopinatus is geographically isolated as a species (northern Africa and potentially southern Spain and Portugal) and brings into question whether I. inopinatus exists in central Europe. Our results highlight the probable existence of I. inopinatus and the power of utilizing genomic data in answering questions regarding tick taxonomy.


Asunto(s)
Ixodes , Humanos , Animales , Ixodes/genética , ARN Ribosómico 16S/genética , Europa (Continente) , Alemania , Portugal
14.
Exp Appl Acarol ; 91(1): 89-97, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37500955

RESUMEN

In Germany, the knowledge about ticks infesting bats is limited, and is restricted only to a few studies, most of them dating back decades. To further improve our knowledge on ticks parasitising bats, healthy and sick bats in central Germany were examined for ticks. In total 519 larvae and one nymph of Carios vespertilionis were collected from nine bat species: Eptesicus nilssonii, Eptesicus serotinus, Myotis daubentonii, Myotis myotis, Nyctalus leisleri, Pipistrellus nathusii, Pipistrellus pygmaeus, Pipistrellus pipistrellus, and Vespertilio murinus. Either the presence of C. vespertilionis was new for some areas or it was confirmed in some federal states in central Germany. The infestation rate was mostly low (n = 1-5 larvae/bat). However, in two cases a high number of ticks was observed. The highest infestation of 97 C. vespertilionis larvae was recorded on one Parti-coloured bat (V. murinus).


Asunto(s)
Argas , Argasidae , Quirópteros , Animales , Alemania
15.
Exp Appl Acarol ; 89(3-4): 461-473, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37115465

RESUMEN

Questing ticks are usually collected by flagging or dragging. Mostly exophilic tick species are caught, such as Ixodes ricinus, the most common tick in Central Europe. In the present study, ticks collected from underground environments in the Grand Duchy of Luxembourg and in the Central German Uplands (Federal States of Hesse, Bavaria, Thuringia, Baden-Wuerttemberg, Rhineland-Palatinate, Saarland and Northrhine-Westphalia) were investigated. Six tick species were revealed among the 396 analyzed specimens: Ixodes ariadnae, Ixodes canisuga, Ixodes hexagonus, I. ricinus, Ixodes trianguliceps, and Dermacentor marginatus. Adults and immatures of I. hexagonus dominated the findings (57% of all specimens), especially in shelters acting as potential resting places of main hosts. Ixodes canisuga and I. trianguliceps were for the first time recorded in Luxembourg, and one nymph of the bat tick I. ariadnae represents only the second report for Germany. Collecting ticks in subterranean environments turned out to be a useful approach to increase knowledge about the occurrence of relatively rare tick species, including those that spend most of their lifetime on their hosts, but detach in such environmental settings.


Asunto(s)
Ixodes , Infestaciones por Garrapatas , Masculino , Animales , Femenino , Luxemburgo , Infestaciones por Garrapatas/epidemiología , Europa (Continente) , Alemania/epidemiología , Ninfa
16.
Exp Appl Acarol ; 89(2): 251-274, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36928533

RESUMEN

The first data update of the atlas of ticks in Germany published in 2021 is presented here. This atlas provides maps based on georeferenced tick locations of 21 species endemic in Germany as well as three tick species that are regularly imported to Germany. The data update includes the following numbers of newly georeferenced tick locations: 17 Argas reflexus, 79 Carios vespertilionis, 2 Dermacentor marginatus, 43 Dermacentor reticulatus, 4 Haemaphysalis concinna, 3 Haemaphysalis punctata, 3 Hyalomma rufipes, 3 Ixodes apronophorus, 9 Ixodes arboricola, 1 Ixodes ariadnae, 30 Ixodes canisuga, 3 Ixodes frontalis, 80 Ixodes hexagonus, 3 Ixodes lividus, 497 Ixodes ricinus/inopinatus, 1 Ixodes rugicollis, 17 Ixodes trianguliceps, 14 Ixodes vespertilionis, and 45 Rhipicephalus sanguineus sensu lato. Old and new tick findings were mapped, such as the northernmost occurrence of D. marginatus in Germany observed in 2021, but also the historical records from the first descriptions of I. apronophorus and I. arboricola, which were georeferenced here for the first time. The digital dataset of tick locations available for Germany is supplemented by 854 new tick locations. These records increase the number of tick species mapped in the federal states Bavaria, Brandenburg and Mecklenburg Western Pomerania by five each, those in Berlin and Schleswig-Holstein by four each, those in Hamburg by three, those in Baden-Wuerttemberg, Bremen, Lower Saxony, Northrhine-Westphalia, Rhineland Palatinate and Thuringia by two each, and those in Hesse, Saxony and Saxony-Anhalt by one each. Thus, the first data update of the tick atlas in Germany and the underlying digital dataset significantly improve our knowledge of the distribution of these tick species and helps to investigate the effects of climate change and habitat changes on them.


Asunto(s)
Argas , Argasidae , Ixodes , Ixodidae , Rhipicephalus sanguineus , Animales , Alemania
17.
Pathogens ; 12(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36839457

RESUMEN

Tick-borne encephalitis (TBE) is Eurasia's most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the transmission cycle still need to be understood. To better understand the infection dynamics, rodents were captured in a capture-mark-release-recapture-study in two natural foci in Bavaria, Germany, monthly from March 2019 to October 2022. Overall, 651 blood and thoracic lavage samples from 478 different wild rodents (Clethrionomys glareolus and Apodemus flavicollis) were analyzed for antibodies against tick-borne encephalitis virus (TBEV) by indirect immunofluorescence assay (IIFA) and confirmed using a serum neutralization test (SNT). Furthermore, a generalized linear mixed model (GLMM) analysis was performed to investigate ecological and individual factors for the probability of infection in rodents. Clethrionomys glareolus (19.4%) had a higher seroprevalence than A. flavicollis (10.5%). Within Cl. glareolus, more males (40.4%) than females (15.6%) were affected, and more adults (25.4%) than juveniles (9.8%). The probability of infection of rodents rather depends on factors such as species, sex, and age than on the study site of a natural focus, year, and season. The high incidence rates of rodents, particularly male adult bank voles, highlight their critical role in the transmission cycle of TBEV in a natural focus and demonstrate that serologically positive rodents can be reliably detected in a natural focus regardless of season or year. In addition, these data contribute to a better understanding of the TBEV cycle and thus could improve preventive strategies for human infections.

18.
Pathogens ; 12(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36839620

RESUMEN

Ticks are obligate blood-sucking parasites of wild animals and transmit many zoonotic microorganisms that can spread to domesticated animals and then to humans. In Cameroon, little is known about tick diversity among wildlife, especially for animals which are hunted for human consumption. Therefore, this survey was undertaken to investigate tick and Rickettsia species diversity parasitizing the wild animals sold in bush meat markets in Cameroon. In total, 686 ticks were collected and identified to the species level based on morphology, and some were genetically analyzed using the 16S rRNA gene. Eighteen tick species belonging to five genera were identified: Amblyomma spp. (Amblyomma compressum, Amblyomma flavomaculatum, and Amblyomma variegatum), Haemaphysalis spp. (Haemaphysalis camicasi, Haemaphysalis houyi, Haemaphysalis leachi, and Haemaphysalis parmata), Hyalomma spp. (Hyalomma nitidum, Hyalomma rufipes, and Hyalomma truncatum), Ixodes spp. (Ixodes rasus and Ixodes moreli), and Rhipicephalus spp. (Rhipicephalus guilhoni, Rhipicephalus moucheti, Rhipicephalus muhsamae, Rhipicephalus microplus, Rhipicephalus camicasi, and Rhipicephalus linnaei). In terms of Rickettsia important for public health, two Rickettsia spp., namely Rickettsia aeschlimannii and Rickettsia africae, were detected in Hyalomma spp. and Amblyomma spp., respectively. Distinct tick-pathogen patterns were present for divergent sequences of R. africae associated with exclusively A. variegatum vectors (type strain) versus vectors comprising A. compressum, A. flavomaculatum, and A. variegatum. This suggests possible effects of vector species population dynamics on pathogen population circulation dynamics. Furthermore, Candidatus Rickettsia africaustralis was detected for the first time in Cameroon in I. rasus. This study highlights the high diversity of ticks among wildlife sold in bush meat markets in Cameroon.

19.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674613

RESUMEN

The ectoparasite Ixodes ricinus is an important vector for many tick-borne diseases (TBD) in the northern hemisphere, such as Lyme borreliosis, rickettsiosis, human granulocytic anaplasmosis, or tick-borne encephalitis virus. As climate change will lead to rising temperatures in the next years, we expect an increase in tick activity, tick population, and thus in the spread of TBD. Consequently, it has never been more critical to understand relationships within the microbial communities in ticks that might contribute to the tick's fitness and the occurrence of TBD. Therefore, we analyzed the microbiota in different tick tissues such as midgut, salivary glands, and residual tick material, as well as the microbiota in complete Ixodes ricinus ticks using 16S rRNA gene amplicon sequencing. By using a newly developed DNA extraction protocol for tick tissue samples and a self-designed mock community, we were able to detect endosymbionts and pathogens that have been described in the literature previously. Further, this study displayed the usefulness of including a mock community during bioinformatic analysis to identify essential bacteria within the tick.


Asunto(s)
Ixodes , Enfermedad de Lyme , Microbiota , Enfermedades por Picaduras de Garrapatas , Animales , Femenino , Humanos , Ixodes/genética , ARN Ribosómico 16S/genética , Glándulas Salivales/microbiología
20.
Microorganisms ; 11(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677459

RESUMEN

Ticks are important vectors for Rickettsia spp. belonging to the Spotted Fever Group responsible for causing Rickettsiosis worldwide. Rickettsioses pose an underestimated health risk to tourists and local inhabitants. There is evidence of the presence of Rickettsia spp. in Zambia, however there is limited data. A total of 1465 ticks were collected in 20 different locations from dogs and cattle including one cat. Ticks were identified by morphological features or by sequencing of the 16S mitochondrial rRNA gene. Individual ticks were further tested for rickettsiae using a pan-Rickettsia real-time-PCR. Rickettsia species in PCR-positive ticks were identified by sequencing the 23S-5S intergenic spacer region or partial ompA gene, respectively. Seven tick species belonging to three different tick genera were found, namely: Amblyomma variegatum, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) microplus, Rhipicephalus simus, Rhipicephalus sanguineus, Rhipicephalus zambesiensis and Haemaphysalis elliptica. Out of the 1465 ticks collected, 67 (4.6%) tested positive in the pan-Rickettsia PCR. This study provides detailed data about the presence of Rickettsia species in South Luangwa Valley, Eastern Province, Zambia for the first time. High prevalence of Rickettsia africae in Amblyomma variegatum was found, which indicates the potential risk of infection in the investigated area. Furthermore, to our best knowledge, this is the first time Rickettsia massiliae, a human pathogen causing spotted fever, has been detected in Zambia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA