Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L958-L968, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33759577

RESUMEN

Chronic obstructive lung disease (COPD) and lung cancer are both caused by smoking and often occur as comorbidity. The programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis is an important canonic immunoregulatory pathway, and antibodies that specifically block PD-1 or PD-L1 have demonstrated efficacy as therapeutic agents for non-small cell lung cancer. The role of the PD-1/PD-L1 axis in the pathogenesis of COPD is unknown. Here, we analyzed the function of the PD-1/PD-L1 axis in preclinical COPD models and evaluated the concentrations of PD-1 and PD-L1 in human serum and bronchoalveolar lavage (BAL) fluids as biomarkers for COPD. Anti-PD-1 treatment decreased lung damage and neutrophilic inflammation in mice chronically exposed to cigarette smoke (CS) or nontypeable Haemophilus influenzae (NTHi). Ex vivo stimulated macrophages obtained from anti-PD-1-treated mice released reduced amounts of inflammatory cytokines. PD-L1 concentrations correlated positively with PD-1 concentrations in human serum and BAL fluids. Lung sections obtained from patients with COPD stained positive for PD-L1. Our data indicate that the PD-1/PD-L1 axis is involved in developing inflammation and tissue destruction in COPD. Inflammation-induced activation of the PD-1 pathway may contribute to disease progression.


Asunto(s)
Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Macrófagos Alveolares/patología , Masculino , Ratones , Neutrófilos/patología , Receptor de Muerte Celular Programada 1/metabolismo , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/patología
3.
Elife ; 92020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32696761

RESUMEN

Understanding T cell function in vivo is of key importance for basic and translational immunology alike. To study T cells in vivo, we developed a new knock-in mouse line, which expresses a fusion protein of granzyme B, a key component of cytotoxic granules involved in T cell-mediated target cell-killing, and monomeric teal fluorescent protein from the endogenous Gzmb locus. Homozygous knock-ins, which are viable and fertile, have cytotoxic T lymphocytes with endogeneously fluorescent cytotoxic granules but wild-type-like killing capacity. Expression of the fluorescent fusion protein allows quantitative analyses of cytotoxic granule maturation, transport and fusion in vitro with super-resolution imaging techniques, and two-photon microscopy in living knock-ins enables the visualization of tissue rejection through individual target cell-killing events in vivo. Thus, the new mouse line is an ideal tool to study cytotoxic T lymphocyte biology and to optimize personalized immunotherapy in cancer treatment.


Cytotoxic, or killer, T cells are a key part of the immune system. They carry a lethal mixture of toxic chemicals, stored in packages called cytotoxic granules. Killer T cells inject the contents of these granules into infected, cancerous or otherwise foreign cells, forcing them to safely self-destruct. In test tubes, T cells are highly efficient serial killers, moving from one infected cell to the next at high speed. But, inside the body, their killing rate slows down. Researchers think that this has something to do with how killer T cells interact with other immune cells, but the details remain unclear. To get to grips with how killer T cells work in their natural environment, researchers need a way to follow them inside the body. One approach could be to use genetic engineering to attach a fluorescent tag to a protein found inside killer T cells. That tag then acts as a beacon, lighting the cells up and allowing researchers to track their movements. Tagging a protein inside the cytotoxic granules would allow close monitoring of T cells as they encounter, recognize and kill their targets. But fluorescent tags are bulky, and they can stop certain proteins from working as they should. To find out whether it is possible to track killer T cells with fluorescent tags, Chitirala, Chang et al. developed a new type of genetically modified mouse. The modification added a teal-colored tag to a protein inside the granules of the killer T cells. Chitirala, Chang et al. then used a combination of microscopy techniques inside and outside of the body to find out if the T cells still worked. This analysis showed that, not only were the tagged T cells able to kill diseased cells as normal, the tags made it possible to watch it happening in real time. Super-resolution microscopy outside of the body allowed Chitirala, Chang et al. to watch the killer T cells release their toxic granule content. It was also possible to follow individual T cells as they moved into, and destroyed, foreign tissue that had been transplanted inside the mice. These new mice provide a tool to understand how killer T cells really work. They could allow study not only of the cells themselves, but also their interactions with other immune cells inside the body. This could help to answer open questions in T cell research, such as why T cells seem to be so much more efficient at killing in test tubes than they are inside the body. Understanding this better could support the development of new treatments for viruses and cancer.


Asunto(s)
Granzimas/química , Proteínas Fluorescentes Verdes/química , Ratones Transgénicos/fisiología , Linfocitos T Citotóxicos/fisiología , Animales , Ratones
4.
Front Immunol ; 11: 1080, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547563

RESUMEN

Granules of cytotoxic T lymphocytes (CTL) are derived from the lysosomal compartment. Synaptotagmin7 (Syt7) appears to be the calcium sensor triggering fusion of lysosomes in fibroblasts. Syt7 has been proposed to control cytotoxic granule (CG) fusion in lymphocytes and mice lacking Syt7 have reduced ability to clear infections. However, fusion of CG persists in the absence of Syt7. To clarify the role of Syt7 in CTL function, we have examined the fusion of cytotoxic granules of CD8+ T-lymphocytes from Syt7 knock-out mice. We have recorded granule fusion in living CTL, using total internal reflection microscopy. Since Syt7 is considered a high affinity calcium-sensor specialized for fusion under low calcium conditions, we have compared cytotoxic granule fusion under low and high calcium conditions in the same CTL. There was no difference in latencies or numbers of fusion events per CTL under low-calcium conditions, indicating that Syt7 is not required for cytotoxic granule fusion. A deficit of fusion in Syt7 KO CTL was seen when a high-calcium solution was introduced. Expressing wild type Syt7 in Syt7 KO lymphocytes reversed this deficit, confirming its Syt7-dependence. Mutations of Syt7 which disrupt calcium binding to its C2A domain reduced the efficacy of this rescue. We counted the cytotoxic granules present at the plasma membrane to determine if the lack of fusion events in the Syt7 KO CTL was due to a lack of granules. In low calcium there were no differences in fusion events per CTL, and granule numbers were similar. In high calcium, granule number was similar though wild type CTL exhibited significantly more fusion than Syt7 KO CTL. The modest differences in granule counts do not account for the lack of fusion in high calcium in Syt7 KO CTL. In Syt7 KO CTL expressing wild type Syt7, delivery of cytotoxic granules to the plasma membrane was comparable to that of wild type CTL. Syt7 KO CTL expressing Syt7 with deficient calcium binding in the C2A domain had significantly less fusion and fewer CG at the plasma membrane. These results indicate that Syt7 is involved in trafficking of CG to the plasma membrane.


Asunto(s)
Vesículas Secretoras/metabolismo , Sinaptotagminas/metabolismo , Linfocitos T Citotóxicos/inmunología , Animales , Calcio/metabolismo , Células Cultivadas , Citotoxicidad Inmunológica , Sinapsis Inmunológicas , Fusión de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Transporte de Proteínas , Sinaptotagminas/genética
5.
J Immunol ; 204(10): 2818-2828, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32269094

RESUMEN

CTLs release cytotoxic proteins such as granzymes and perforin through fusion of cytotoxic granules (CG) at the target cell interface, the immune synapse, to kill virus-infected and tumorigenic target cells. A characteristic feature of these granules is their acidic pH inside the granule lumen, which is required to process precursors of granzymes and perforin to their mature form. However, the role of acidic pH in CG maturation, transport, and fusion is not understood. We demonstrate in primary murine CTLs that the a3-subunit of the vacuolar-type (H+)-adenosine triphosphatase is required for establishing a luminal pH of 6.1 inside CG using ClopHensorN(Q69M), a newly generated CG-specific pH indicator. Knockdown of the a3-subunit resulted in a significantly reduced killing of target cells and a >50% reduction in CG fusion in total internal reflection fluorescence microscopy, which was caused by a reduced number of CG at the immune synapse. Superresolution microscopy revealed a reduced interaction of CG with the microtubule network upon a3-subunit knockdown. Finally, we find by electron and structured illumination microscopy that knockdown of the a3-subunit altered the diameter and density of individual CG, whereas the number of CG per CTL was unaffected. We conclude that the a3-subunit of the vacuolar adenosine triphosphatase is not only responsible for the acidification of CG, but also contributes to the maturation and efficient transport of the CG to the immune synapse.


Asunto(s)
Sinapsis Inmunológicas/metabolismo , Microtúbulos/metabolismo , Vesículas Secretoras/metabolismo , Linfocitos T Citotóxicos/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Células Cultivadas , Citotoxicidad Inmunológica , Exocitosis , Concentración de Iones de Hidrógeno , Sinapsis Inmunológicas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Proteínas R-SNARE/genética , Linfocitos T Citotóxicos/inmunología , ATPasas de Translocación de Protón Vacuolares/genética
6.
Front Immunol ; 10: 1855, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447853

RESUMEN

Cytotoxic T lymphocytes kill infected or malignant cells through the directed release of cytotoxic substances at the site of target cell contact, the immunological synapse. While genetic association studies of genes predisposing to early-onset life-threatening hemophagocytic lymphohistiocytosis has identified components of the plasma membrane fusion machinery, the identity of the vesicular components remain enigmatic. Here, we identify VAMP7 as an essential component of the vesicular fusion machinery of primary, human T cells. VAMP7 co-localizes with granule markers throughout all stages of T cell maturation and simultaneously fuses with granule markers at the IS. Knock-down of VAMP7 expression significantly decreased the killing efficiency of T cells, without diminishing early T cell receptor signaling. VAMP7 exerts its function in a SNARE complex with Syntaxin11 and SNAP-23 on the plasma membrane. The identification of the minimal fusion machinery in T cells provides a starting point for the development of potential drugs in immunotherapy.


Asunto(s)
Degranulación de la Célula/inmunología , Gránulos Citoplasmáticos/inmunología , Proteínas R-SNARE/inmunología , Linfocitos T Citotóxicos/inmunología , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Proteínas R-SNARE/metabolismo , Vesículas Secretoras/inmunología , Vesículas Secretoras/metabolismo , Linfocitos T Citotóxicos/metabolismo
7.
J Neurosci ; 39(1): 18-27, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389842

RESUMEN

The calcium-dependent activator proteins for secretion (CAPS) are priming factors for synaptic and large dense-core vesicles (LDCVs), promoting their entry into and stabilizing the release-ready state. A modulatory role of CAPS in catecholamine loading of vesicles has been suggested. Although an influence of CAPS on monoamine transporter function and on vesicle acidification has been reported, a role of CAPS in vesicle loading is disputed. Using expression of naturally occurring splice variants of CAPS2 into chromaffin cells from CAPS1/CAPS2 double-deficient mice of both sexes, we show that an alternative exon of 40 aa is responsible for enhanced catecholamine loading of LDCVs in mouse chromaffin cells. The presence of this exon leads to increased activity of both vesicular monoamine transporters. Deletion of CAPS does not alter acidification of vesicles. Our results establish a splice-variant-dependent modulatory effect of CAPS on catecholamine content in LDCVs.SIGNIFICANCE STATEMENT The calcium activator protein for secretion (CAPS) promotes and stabilizes the entry of catecholamine-containing vesicles of the adrenal gland into a release-ready state. Expression of an alternatively spliced exon in CAPS leads to enhanced catecholamine content in chromaffin granules. This exon codes for 40 aa with a high proline content, consistent with an unstructured loop present in the portion of the molecule generally thought to be involved in vesicle priming. CAPS variants containing this exon promote serotonin uptake into Chinese hamster ovary cells expressing either vesicular monoamine transporter. Epigenetic tuning of CAPS variants may allow modulation of endocrine adrenaline and noradrenaline release. This mechanism may extend to monoamine release in central neurons or in the enteric nervous system.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/fisiología , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Vesículas Citoplasmáticas/metabolismo , Exones/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Femenino , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Noqueados , Isoformas de Proteínas/genética , Serotonina/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
8.
Cell Mol Life Sci ; 74(3): 399-408, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27585956

RESUMEN

Cytotoxic T lymphocytes patrol our body in search for infected cells which they kill through the release of cytotoxic substances contained in cytotoxic granules. The fusion of cytotoxic granules occurs at a specially formed contact site, the immunological synapse, and is tightly controlled to ensure specificity. In this review, we discuss the contribution of two intracellular compartments, endosomes and cytotoxic granules, to the formation, function and disassembly of the immunological synapse. We highlight a recently proposed sequential process of fusion events at the IS upon target cell recognition. First, recycling endosomes fuse with the plasma membrane to deliver cargo required for the docking of cytotoxic granules. Second, cytotoxic granules arrive and fuse upon docking in a SNARE-dependent manner. Following fusion, membrane components of the cytotoxic granule are retrieved through endocytosis to ensure the fast, efficient serial killing of target cells that is characteristic of cytotoxic T lymphocytes.


Asunto(s)
Citotoxicidad Inmunológica , Endocitosis , Exocitosis , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Animales , Gránulos Citoplasmáticos/inmunología , Endosomas/inmunología , Humanos , Lisosomas/inmunología , Fusión de Membrana , Proteínas SNARE/inmunología
9.
J Immunol ; 197(6): 2473-84, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27527597

RESUMEN

CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process.


Asunto(s)
Gránulos Citoplasmáticos/inmunología , Endocitosis , Linfocitos T Citotóxicos/inmunología , Animales , Clatrina/metabolismo , Gránulos Citoplasmáticos/fisiología , Dinaminas/inmunología , Dinaminas/metabolismo , Endosomas/inmunología , Endosomas/metabolismo , Exocitosis , Granzimas/metabolismo , Sinapsis Inmunológicas , Ratones , Proteínas R-SNARE/inmunología
10.
Pigment Cell Melanoma Res ; 29(1): 43-59, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26527546

RESUMEN

Melanosomes are a type of lysosome-related organelle that is commonly defective in Hermansky-Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC-1, -2, -3, or AP-1, -3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we found that a cohort of Rab9A associates with the melanosomes and its knockdown in melanocytes results in hypopigmented melanosomes due to mistargeting of melanosomal proteins to lysosomes. In addition, the Rab9A-depletion phenotype resembles Rab38/32-inactivated or BLOC-3-deficient melanocytes, suggesting that Rab9A works in line with BLOC-3 and Rab38/32 during melanosome cargo transport. Furthermore, silencing of Rab9A, Rab38/32 or its effector VARP, or BLOC-3-deficiency in melanocytes decreased the length of STX13-positive recycling endosomal tubules and targeted the SNARE to lysosomes. This result indicates a defect in directing recycling endosomal tubules to melanosomes. Thus, Rab9A and its co-regulatory GTPases control STX13-mediated cargo delivery to maturing melanosomes.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Melanosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Lisosomas/metabolismo , Melanocitos/metabolismo , Ratones , Modelos Biológicos , Pigmentación , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...