Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Foods ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38890930

RESUMEN

Salmonella Enteritidis, Escherichia coli, and Campylobacter jejuni are among the most common foodborne pathogens worldwide, and poultry products are strongly associated with foodborne pathogen outbreaks. These pathogens are capable of producing biofilms on several surfaces used in the food processing industry, including polyethylene and stainless steel. However, studies on multi-species biofilms are rare. Therefore, this study aimed to develop predictive mathematical models to simulate the adhesion and removal of multispecies biofilms. All combinations of microorganisms resulted in biofilm formation with differences in bacterial counts. E. coli showed the greatest ability to adhere to both surfaces, followed by S. Enteritidis and C. jejuni. The incubation time and temperature did not influence adhesion. Biofilm removal was effective with citric acid and benzalkonium chloride but not with rhamnolipid. Among the generated models, 46 presented a significant coefficient of determination (R2), with the highest R2 being 0.88. These results provide support for the poultry industry in creating biofilm control and eradication programs to avoid the risk of contamination of poultry meat.

2.
Food Microbiol ; 114: 104280, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290865

RESUMEN

Poultry products are recognized as the main source of Salmonella and Campylobacter jejuni infections in humans, while avian pathogenic Escherichia coli may have zoonotic potential and can be transmitted from chicken meat to humans. Biofilm formation contributes to their spread through the food chain. This study aimed to compare the adhesion of Salmonella Enteritidis, E. coli, and C. jejuni strains isolated from poultry, food implicated in outbreaks, and poultry slaughterhouses on three surfaces widely used in poultry production (polystyrene, stainless steel, and polyethylene). S. Enteritidis and E. coli adhesion on the three surfaces tested were not significantly different (p > 0.05). Interestingly, the number of C. jejuni cells on stainless steel (4.51-4.67 log10 CFU/cm.-2) was significantly higher (p = 0.0004) than that on polystyrene (3.80-4.25 log10 CFU/cm.-2), but similar (p > 0.05) to that on polyethylene (4.03-4.36 log10 CFU/cm.-2). However, C. jejuni adhesion was significantly lower (p < 0.05) than S. Enteritidis and E. coli adhesion, regardless of the surface evaluated. In addition, scanning electron microscopy analyses have shown an increased irregularity of the stainless steel surface when compared to polyethylene and polystyrene. These irregularities form small spaces ideal for microbial adhesion.


Asunto(s)
Campylobacter jejuni , Salmonella enteritidis , Humanos , Escherichia coli , Adhesión Bacteriana , Biopelículas , Poliestirenos , Acero Inoxidable , Microbiología de Alimentos , Polietileno
3.
Braz J Microbiol ; 54(3): 2035-2045, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37184738

RESUMEN

Owing to its antimicrobial activity, electrochemically activated water (ECAW) is a potential alternative to chemical disinfectants for eliminating foodborne pathogens, including Salmonella Heidelberg, from food processing facilities. However, their antibiofilm activity remains unclear. This study aimed to evaluate the antibiofilm activity of ECAW against S. Heidelberg biofilms formed on stainless steel and polyethylene and to determine its corrosive capacity. ECAW (200 ppm) and a broad-spectrum disinfectant (0.2%) were tested for their antibiofilm activity against S. Heidelberg at 25 °C and 37 °C after 10 and 20 min of contact with stainless steel and polyethylene. Potentiostatic polarization tests were performed to compare the corrosive capacity of both compounds. Both compounds were effective in removing S. Heidelberg biofilms. Bacterial counts were significantly lower with ECAW than with disinfectant in polyethylene, regardless the time of contact. The time of contact and the surface significantly influenced the bacterial counts of S. Heidelberg. Temperature was not an important factor affecting the antibiofilm activities of the compounds. ECAW was less corrosive than the disinfectant. ECAW demonstrated a similar or even superior effect in the control of S. Heidelberg biofilms, when compared to disinfectants, reducing bacterial counts by up to 5 log10 CFU cm-2. The corrosion of stainless steel with ECAW was similar to that of commercial disinfectants. This technology is a possible alternative for controlling S. Heidelberg in the food production chain.


Asunto(s)
Cáusticos , Desinfectantes , Acero Inoxidable , Cáusticos/farmacología , Biopelículas , Salmonella , Desinfectantes/farmacología , Polietilenos/farmacología , Microbiología de Alimentos
4.
Braz J Microbiol ; 53(2): 1051-1064, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35260995

RESUMEN

Biofilm formation has been suggested to play a significant role in the survival of pathogens in food production. Interest in evaluating alternative products of natural origin for disinfectant use has increased. However, there is a lack of information regarding the effects of biosurfactants and organic acids on Salmonella enterica serotype Enteritidis, Escherichia coli, and Campylobacter jejuni biofilms, mainly considering temperatures found in environments of poultry processing, as well as simulating the contact times used for disinfection. The aim of this study was to evaluate the antibiofilm activity of rhamnolipid, malic acid, and citric acid on the adhesion of S. Enteritidis, E. coli, and C. jejuni on polystyrene surfaces at different temperatures (4, 12, and 25 °C), compound concentrations, and times of contact (5 and 10 min), and to analyze the potential use of these compounds to disrupt formed biofilms. All three compounds exhibited antibiofilm activity under all analyzed conditions, both in the prevention and removal of formed biofilms. Contact time was less important than temperature and concentration. The antibiofilm activity of the compounds also varied according to the pathogens involved. In the food industry, compound selection must consider the temperature found in each stage of product processing and the target pathogens to be controlled.


Asunto(s)
Campylobacter jejuni , Escherichia coli , Animales , Biopelículas , Microbiología de Alimentos , Aves de Corral/microbiología , Temperatura
5.
Int J Food Microbiol ; 364: 109533, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066330

RESUMEN

Poultry products are susceptible to contamination by pathogenic and spoilage bacteria during the slaughtering process. Molecular techniques have been used to assist in the identification of microorganisms in various microbiomes. The aim of this study was to identify bacterial components of the microbiome in poultry carcasses during the slaughter process, using high-throughput next generation sequencing (HT-NGS). Samples were collected from three slaughterhouses (A, B, and C) located in southern Brazil and included those taken from three points (initial, middle, and end) in the chiller tanks and two carcass pools (at the entrance to the clean area and after the final carcass packaging) at each establishment. A total of 104 carcasses were collected from each slaughterhouse. For this study, HT-NGS allows for a precise, quantitative and culture-independent microbiome assessment in poultry products. Three phyla (Firmicutes, Bacteroidetes, and Proteobacteria) were found in all establishments, and one phylum (Verrucomicrobia) was found only in Establishment A. Common set of genera (Anaerotruncus, Bacteroides, Campylobacter, Erysipelatoclostridium, Faecalibacterium, Lachnoclostridium, and Subdoligranulum) was identified in processing establishments along with the groups unique to a particular site. Pathogenic and spoilage bacteria, as well as other microorganisms that were not expected in poultry products, were detected by HT-NGS technique. The Shannon diversity index was the highest in Establishment B (2.40), followed by establishments C (1.98) and A (1.43). As we progressed through sample analysis, from the entrance of the clean area to the final carcass packaging area, we found significant reductions (p < 0.05) in the quantities of sequences of all phyla in establishments A and B. Significant differences (p < 0.05) in the quantities of sequences of all phyla were found between different stages in the slaughtering process. More stringent control procedures in establishments A and B were associated with reduced contamination even though all establishments followed the official sanitary standards. Our findings provide new insight into the chicken meat microbiome, and can be used in future studies to help ensure food safety in slaughterhouses.


Asunto(s)
Microbiología de Alimentos , Aves de Corral , Mataderos , Animales , Pollos , Secuenciación de Nucleótidos de Alto Rendimiento , Carne
6.
Food Microbiol ; 94: 103645, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279070

RESUMEN

As a consequence of developing antimicrobial resistance to disinfectants, copper, which exhibits antimicrobial activity, has been studied as a possible alternative to the use of stainless steel surfaces. The aim was to evaluate the antimicrobial activity of copper surfaces in preventing biofilm formation by Salmonella Enteritidis and to determine their corrosive capacity. Strains of S. Enteritidis were incubated at 4 °C, 12 °C, and 25 °C with 1 cm2 coupons of electrolytic copper (99.9% Cu), brass (70% Cu), copper coated with tin, and stainless steel (control). A planktonic cell-suspension assay was used, followed by serial dilutions and bacterial counts. The corrosion test was performed with two disinfectants: benzalkonium chloride and sodium hypochlorite (100, 200, and 400 ppm). There was a significant reduction in biofilm production (log10 CFU cm-2) on the copper (2.64 at 4 °C, 4.20 at 12 °C, 4.56 at 25 °C) and brass (2.79 at 4 °C, 3.49 at 12 °C, 4.55 at 25 °C) surfaces compared to the control (5.68 at 4 °C, 5.89 at 12 °C, 6.01 at 25 °C). The antimicrobial surfaces showed uniform corrosion similar to that of surfaces generally used. These results demonstrated the effectiveness of copper surfaces in reducing S. Enteritidis and suggest they can be used as a complementary antimicrobial to control for this pathogen.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cobre/farmacología , Desinfectantes/farmacología , Manipulación de Alimentos/instrumentación , Salmonella enteritidis/efectos de los fármacos , Animales , Cobre/análisis , Contaminación de Equipos/prevención & control , Aves de Corral , Salmonella enteritidis/crecimiento & desarrollo , Salmonella enteritidis/fisiología , Acero Inoxidable/análisis , Zinc/análisis
7.
Pesqui. vet. bras ; 36(7): 652-656, jul. 2016. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: lil-794775

RESUMEN

The thymus is a lymphoid organ and usually evaluated for the degree of lymphocyte loss with subjective histological techniques. This study aimed to adapt and to apply of the digital analysis of the lymphoid depletion system (ADDL) in the thymus in order to obtain a more accurate analysis. Glucocorticoid was used to induce immunosuppression in 55 broilers at 21 days of age; other 15 broilers were the control group. After euthanasia of the broilers, postmortem examination was made. Both thymic chains were collected and six lobes were selected for histological examination of the degree of lymphocyte depletion (scores 1 to 5) and for submission to all stages of processing by the ADDL system. The artificial constructed neural networks (ANN) obtained 94.03% of correct classifications. In conclusion, it was possible to adopt objective criteria to evaluate thymic lymphoid depletion with the ADDL system.(AU)


O timo é um órgão linfóide, que é normalmente avaliado para o grau de perda de linfócitos a partir de técnicas histológicas subjetivas. Este trabalho teve como objetivo a adaptação e aplicação do sistema de análise digital de depleção linfóide (ADDL) para o timo, a fim de tornar sua análise mais acurada. Glicocorticóides foram utilizados a fim de induzir imunossupressão em 55 aves de 21 dias de idade. Outras 15 aves formaram o grupo controle. Posteriormente, para cada um dos aves, realizou-se a eutanásia e necropsia. Ambas as cadeias do timo foram coletadas e foram selecionadas seis lóbulos para processamento histológico, análise quanto ao grau de depleção linfocitária (escores de 1-5) e submissão a todas as fases do processamento pelo sistema ADDL. Observou-se que a rede neural artificial (RNA) construída obteve 94,03% de classificações corretas. Em conclusão, foi possível adotar critérios objetivos para avaliar a depleção linfóide tímica utilizando o sistema ADDL.(AU)


Asunto(s)
Animales , Pollos/fisiología , Inmunidad Celular/fisiología , Depleción Linfocítica/veterinaria , Linfocitos/fisiología , Red Nerviosa/fisiología , Timo/fisiopatología , Glucocorticoides/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA