Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pharmaceutics ; 16(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38931873

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, poses a significant global health threat. The spike glycoprotein S1 of the SARS-CoV-2 virus is known to induce the production of pro-inflammatory mediators, contributing to hyperinflammation in COVID-19 patients. Triphala, an ancient Ayurvedic remedy composed of dried fruits from three plant species-Emblica officinalis (Family Euphorbiaceae), Terminalia bellerica (Family Combretaceae), and Terminalia chebula (Family Combretaceae)-shows promise in addressing inflammation. However, the limited water solubility of its ethanolic extract impedes its bioavailability. In this study, we aimed to develop nanoparticles loaded with Triphala extract, termed "nanotriphala", as a drug delivery system. Additionally, we investigated the in vitro anti-inflammatory properties of nanotriphala and its major compounds, namely gallic acid, chebulagic acid, and chebulinic acid, in lung epithelial cells (A549) induced by CoV2-SP. The nanotriphala formulation was prepared using the solvent displacement method. The encapsulation efficiency of Triphala in nanotriphala was determined to be 87.96 ± 2.60% based on total phenolic content. In terms of in vitro release, nanotriphala exhibited a biphasic release profile with zero-order kinetics over 0-8 h. A549 cells were treated with nanotriphala or its active compounds and then induced with 100 ng/mL of spike S1 subunit (CoV2-SP). The results demonstrate that chebulagic acid and chebulinic acid are the active compounds in nanotriphala, which significantly reduced cytokine release (IL-6, IL-1ß, and IL-18) and suppressed the expression of inflammatory genes (IL-6, IL-1ß, IL-18, and NLRP3) (p < 0.05). Mechanistically, nanotriphala and its active compounds notably attenuated the expression of inflammasome machinery proteins (NLRP3, ASC, and Caspase-1) (p < 0.05). In conclusion, the nanoparticle formulation of Triphala enhances its stability and exhibits anti-inflammatory properties against CoV2-SP-induction. This was achieved by suppressing inflammatory mediators and the NLRP3 inflammasome machinery. Thus, nanotriphala holds promise as a supportive preventive anti-inflammatory therapy for COVID-19-related chronic inflammation.

2.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611175

RESUMEN

Curcumin loaded in micelles of block copolymers of ω-methoxypoly(ethylene glycol) and N-(2-hydroxypropyl) methacrylamide modified with aliphatic dilactate (CD) or aromatic benzoyl group (CN) were previously reported to inhibit human ovarian carcinoma (OVCAR-3), human colorectal adenocarcinoma (Caco-2), and human lymphoblastic leukemia (Molt-4) cells. Myeloblastic leukemia cells (K562) are prone to drug resistance and differ in both cancer genotype and phenotype from the three mentioned cancer cells. In the present study, CD and CN micelles were prepared and their effects on K562 and normal cells were explored. The obtained CD and CN showed a narrow size distribution with diameters of 63 ± 3 and 50 ± 1 nm, respectively. The curcumin entrapment efficiency of CD and CN was similarly high, above 80% (84 ± 8% and 91 ± 3%). Both CD and CN showed suppression on WT1-expressing K562 and high cell-cycle arrest at the G2/M phase. However, CD showed significantly higher cytotoxicity to K562, with faster cellular uptake and internalization than CN. In addition, CD showed better compatibility with normal red blood cells and peripheral blood mononuclear cells than CN. The promising CD will be further investigated in rodents and possibly in clinical studies for leukemia treatment.

3.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543115

RESUMEN

In recent years, due to their distinctive and adaptable therapeutic effects, many natural bioactive compounds have been commonly used to treat diseases. Their limited solubility, low bioavailability, inadequate gastrointestinal tract stability, high metabolic rate, and shorter duration of action limited their pharmaceutical applications. However, those can be improved using nanotechnology to create various drug delivery systems, including lipid-based nanoparticles, to adjust the compounds' physicochemical properties and pharmacokinetic profile. Because of the enormous technical advancements made in the fundamental sciences and the physical and chemical manipulation of individual atoms and molecules, the subject of nanotechnology has experienced revolutionary growth. By fabricating certain functionalized particles, nanotechnology opens an innovative horizon in research and development for overcoming restrictions, including traditional medication administration systems. Nanotechnology-driven bioactive compounds are certain to have a high impact and clinical value for current and future uses. Lipid-based nanotechnologies were shown to deliver a range of naturally occurring bioactive compounds with decent entrapment potential and stability, a successfully controlled release, increased bioavailability, and intriguing therapeutic activity. This review outlines bioactive compounds such as paclitaxel, curcumin, rhodomyrtone, quercetin, kaempferol, resveratrol, epigallocatechin-3-gallate, silymarin, and oridonin, fortified within either a natural or synthetic lipid-based drug delivery system based on nanotechnology and their evaluation and clinical considerations.

4.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256052

RESUMEN

Breast cancer stands out as the most widespread form of cancer globally. In this study, the anticancer activities of Clerodendrum chinense (C. chinense) stem ethanolic extract were investigated. High-performance liquid chromatography (HPLC) analysis identified verbascoside and isoverbascoside as the major bioactive compounds in the C. chinense stem extract. Successfully developed nanoparticles exhibited favorable hydrodynamic diameter, polydispersity index, and surface charge, thus ensuring stability after four months of storage. The total phenolic content and total flavonoid contents in the nanoparticles were reported as 88.62% and 95.26%, respectively. The C. chinense stem extract demonstrated a dose-dependent inhibitory effect on MCF-7, HeLa, A549, and SKOV-3 cancer cell lines, with IC50 values of 109.2, 155.6, 206.9, and 423 µg/mL, respectively. C. chinense extract and NPs exhibited dose-dependent cytotoxicity and the highest selectivity index values against MCF-7 cells. A dose-dependent reduction in the colony formation of MCF-7 cells was observed following treatment with the extract and nanoparticles. The extract induced cytotoxicity in MCF-7 cells through apoptosis and necrosis. C. chinense stem extract and nanoparticles decreased mitochondrial membrane potential (MMP) and induced G0/G1 phase arrest in MCF-7 cells. In conclusion, use of C. chinense stem extract and nanoparticles may serve as a potential therapeutic approach for breast cancer, thus warranting further exploration.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Clerodendrum , Humanos , Femenino , Potencial de la Membrana Mitocondrial , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis , Puntos de Control del Ciclo Celular , Células HeLa , Proliferación Celular , Extractos Vegetales/farmacología
5.
Int J Biol Macromol ; 258(Pt 2): 129071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159707

RESUMEN

Vesicle delivery carriers, used to stabilize hydrophobic drugs, are characterized by the propensity to aggregate, and fuse, limiting its applications. Fortifying vesicle-entrapped drugs within a biodegradable polymeric film constitutes a promising solution. In this study, biodegradable poly (vinyl alcohol) copolymerized with gelatin-sericin film and integrated alongside vesicle-entrapped demethoxycurcumin (DMC) or bisdemethoxycurcumin (BDMC) was developed, extensively characterized for improve efficacy, and compared. Vesicle-entrapped DMC or BDMC was spherical in shape with no changes in size, zeta-potential, and morphology after storing at 4 °C for 30 days. Antibacterial activity of vesicle-entrapped DMC formulations against Acinetobacter baumannii and Staphylococcus epidermidis was more effective than that of its free form. DMC and BDMC demonstrated dose dependent reduction in lipopolysaccharides (LPS)-induced nitric oxide (NO) levels either in free or in entrapped form. Moreover, vesicle-entrapped DMC/BDMC suppressed NO production at lower concentrations, compared with that of their free form and significantly improved the viability of RAW264.7 and HaCaT cells. Furthermore, functionalized film with vesicle-entrapped DMC/BDMC demonstrated excellent radical scavenging, biocompatibility, and cell migration efficacy. Thus, incorporating vesicle, entrapped DMC/BDMC within biodegradable polymeric film may comprised a promising strategy for improving stability, wound healing, and inflammation attenuation efficacy.


Asunto(s)
Curcumina , Diarilheptanoides , Sericinas , Curcumina/química , Gelatina , Etanol , Cicatrización de Heridas , Antiinflamatorios
6.
Foods ; 12(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231602

RESUMEN

The aril and seed of nutmeg, Myristica fragrans Houtt. (Myristicaceae), hold significant value in various industries globally. Our preliminary research found two morphological variations: a globose shape and an oval shape. Due to these different characteristics, the safety of consumers is of primary concern. Thus, authentication and comparative pharmacological and toxicity analyses are necessary. In this study, pharmacognostic and advanced phytochemical analyses, DNA barcoding, cytotoxicity, and the anti-nitric oxide production of commercial Thai nutmeg were examined. Via morphologic examinations and TLC fingerprinting, all the sampled aril and seed were categorized into globose and oval-shaped groups. The results of HPLC, GC-MS, and LC-MS/MS experiments revealed distinct differences between these groups. The DNA barcoding of the trnH-psbA region using the BLAST method and neighbor-joining tree analyses confirmed the globose nutmeg as M. fragrans and the oval-shaped variant as M. argentea. A comparison was then carried out between the potential toxicity and anti-inflammatory capabilities of M. fragrans and M. argentea. Cytotoxicity tests on HaCaT, 3T3-L1, Caco-2, HEK293, and RAW264.7 were performed using both methanolic extracts and volatile oil from the arils and seeds of both species. This study concludes that blending or substituting these two species maintains their therapeutic integrity without posing safety concerns.

7.
Foods ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38231740

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are the main toxic components of ambient air particulate matter (PM), causing oxidative damage to the skin and ultimately resulting in skin aging. This study was conducted to determine the anti-oxidant, anti-aging properties and protective effects of the extracts of coffee cherry pulp (Coffea arabica L.), which is a by-product of the coffee industry, against the oxidative damage induced by PAH exposure in human epidermal keratinocytes (HaCaT). Three different techniques were used to extract the coffee cherry pulp: maceration, Soxhlet and ultrasonication to obtain CCM, CCS and CCU extract, respectively, which were then compared to investigate the total phenolic content (TPC) and total flavonoid content (TFC). The chemical compositions were identified and quantified using high-performance liquid chromatography (HPLC). The results demonstrated that Soxhlet could extract the highest content of chlorogenic acid, caffeine and theophylline. CCS showed the significantly highest TPC (324.6 ± 1.2 mg GAE/g extract), TFC (296.8 ± 1.2 mg QE/g extract), anti-radical activity against DPPH free radicals (98.2 ± 0.8 µM Trolox/g extract) and lipid peroxidation inhibition (136.6 ± 6.2 µM Trolox/g extract). CCS also showed the strongest anti-aging effects based on collagenase, elastase, hyaluronidase and tyrosinase inhibitory enzymes. In addition, CCS can protect human keratinocyte cells from PAH toxicity by increasing the cellular anti-oxidant capacity. This study suggests that CCS has the potential to be used as a cosmetic material that helps alleviate skin damage caused by air pollution.

8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-705257

RESUMEN

OBJECTIVE To formulate atractylodin-loaded poly (lactic- co- glycolic acid) (PLGA) nanoparticles and characterize the prepared nanoparticle formulation.METHODS The nanoparticle formu-lation was developed using solvent displacement method. The encapsulation and loading efficiency were characterized and particle size, and zeta potential were determined by dynamic light scattering technique.Drug release was assessed in vitro.RESULTS The size(mean±SD of diameter)of the prepared atractylodin-loaded PLGA nanoparticles were (161.27 ± 1.87)nm with narrow size distribution (mean PDI: 0.068±0.015)and zeta potential(28.83±0.35)mV.The encapsulation and loading efficiency were (48.31±0.83)% and(2.15±0.04)%,respectively.Drug release from atractylodin-loaded PLGA nanoparticles was observed up to (87.70 ± 0.47)% in 72 h with biphasic manner. Moreover, the nanoparticles were found to be freely dispersible in water without aggregation. CONCLUSION Results suggest that PLGA nanoparticles may be used as an effective drug delivery system for atractylodin.The anti-cholangiocar-cinoma activity of this nanoparticle formulation is required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA