Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ticks Tick Borne Dis ; 12(6): 101820, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555711

RESUMEN

Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.


Asunto(s)
Ixodidae/virología , Virus/aislamiento & purificación , Animales , Ixodidae/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/virología , Ninfa/crecimiento & desarrollo , Ninfa/virología , República de Corea , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/transmisión , Enfermedades por Picaduras de Garrapatas/virología
2.
N Engl J Med ; 383(23): 2230-2241, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33264545

RESUMEN

BACKGROUND: From November 2018 through February 2019, person-to-person transmission of Andes virus (ANDV) hantavirus pulmonary syndrome occurred in Chubut Province, Argentina, and resulted in 34 confirmed infections and 11 deaths. Understanding the genomic, epidemiologic, and clinical characteristics of person-to-person transmission of ANDV is crucial to designing effective interventions. METHODS: Clinical and epidemiologic information was obtained by means of patient report and from public health centers. Serologic testing, contact-tracing, and next-generation sequencing were used to identify ANDV infection as the cause of this outbreak of hantavirus pulmonary syndrome and to reconstruct person-to-person transmission events. RESULTS: After a single introduction of ANDV from a rodent reservoir into the human population, transmission was driven by 3 symptomatic persons who attended crowded social events. After 18 cases were confirmed, public health officials enforced isolation of persons with confirmed cases and self-quarantine of possible contacts; these measures most likely curtailed further spread. The median reproductive number (the number of secondary cases caused by an infected person during the infectious period) was 2.12 before the control measures were enforced and decreased to 0.96 after the measures were implemented. Full genome sequencing of the ANDV strain involved in this outbreak was performed with specimens from 27 patients and showed that the strain that was present (Epuyén/18-19) was similar to the causative strain (Epilink/96) in the first known person-to-person transmission of hantavirus pulmonary syndrome caused by ANDV, which occurred in El Bolsón, Argentina, in 1996. Clinical investigations involving patients with ANDV hantavirus pulmonary syndrome in this outbreak revealed that patients with a high viral load and liver injury were more likely than other patients to spread infection. Disease severity, genomic diversity, age, and time spent in the hospital had no clear association with secondary transmission. CONCLUSIONS: Among patients with ANDV hantavirus pulmonary syndrome, high viral titers in combination with attendance at massive social gatherings or extensive contact among persons were associated with a higher likelihood of transmission. (Funded by the Ministerio de Salud y Desarrollo Social de la Nación Argentina and others.).


Asunto(s)
Brotes de Enfermedades , Síndrome Pulmonar por Hantavirus/transmisión , Orthohantavirus , Adolescente , Adulto , Animales , Argentina/epidemiología , Análisis Químico de la Sangre , Portador Sano , Femenino , Orthohantavirus/genética , Síndrome Pulmonar por Hantavirus/epidemiología , Síndrome Pulmonar por Hantavirus/mortalidad , Síndrome Pulmonar por Hantavirus/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Roedores , Carga Viral , Adulto Joven
3.
Viruses ; 12(9)2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872451

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging human pathogen, endemic in areas of China, Japan, and the Korea (KOR). It is primarily transmitted through infected ticks and can cause a severe hemorrhagic fever disease with case fatality rates as high as 30%. Despite its high virulence and increasing prevalence, molecular and functional studies in situ are scarce due to the limited availability of high-titer SFTSV exposure stocks. During the course of field virologic surveillance in 2017, we detected SFTSV in ticks and in a symptomatic soldier in a KOR Army training area. SFTSV was isolated from the ticks producing a high-titer viral exposure stock. Through the use of advanced genomic tools, we present here a complete, in-depth characterization of this viral stock, including a comparison with both the virus in its arthropod source and in the human case, and an in vivo study of its pathogenicity. Thanks to this detailed characterization, this SFTSV viral exposure stock constitutes a quality biological tool for the study of this viral agent and for the development of medical countermeasures, fulfilling the requirements of the main regulatory agencies.


Asunto(s)
Infecciones por Bunyaviridae/virología , Fiebres Hemorrágicas Virales/virología , Phlebovirus/aislamiento & purificación , Adulto , Animales , Infecciones por Bunyaviridae/genética , Infecciones por Bunyaviridae/metabolismo , Femenino , Genoma Viral , Humanos , Masculino , Ratones , Phlebovirus/fisiología , Filogenia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , República de Corea , Garrapatas/virología
4.
Lancet Infect Dis ; 19(12): 1371-1378, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31588039

RESUMEN

BACKGROUND: An alarming rise in reported Lassa fever cases continues in west Africa. Liberia has the largest reported per capita incidence of Lassa fever cases in the region, but genomic information on the circulating strains is scarce. The aim of this study was to substantially increase the available pool of data to help foster the generation of targeted diagnostics and therapeutics. METHODS: Clinical serum samples collected from 17 positive Lassa fever cases originating from Liberia (16 cases) and Guinea (one case) within the past decade were processed at the Liberian Institute for Biomedical Research using a targeted-enrichment sequencing approach, producing 17 near-complete genomes. An additional 17 Lassa virus sequences (two from Guinea, seven from Liberia, four from Nigeria, and four from Sierra Leone) were generated from viral stocks at the US Centers for Disease Control and Prevention (Atlanta, GA) from samples originating from the Mano River Union (Guinea, Liberia, and Sierra Leone) region and Nigeria. Sequences were compared with existing Lassa virus genomes and published Lassa virus assays. FINDINGS: The 23 new Liberian Lassa virus genomes grouped within two clades (IV.A and IV.B) and were genetically divergent from those circulating elsewhere in west Africa. A time-calibrated phylogeographic analysis incorporating the new genomes suggests Liberia was the entry point of Lassa virus into the Mano River Union region and estimates the introduction to have occurred between 300-350 years ago. A high level of diversity exists between the Liberian Lassa virus genomes. Nucleotide percent difference between Liberian Lassa virus genomes ranged up to 27% in the L segment and 18% in the S segment. The commonly used Lassa Josiah-MGB assay was up to 25% divergent across the target sites when aligned to the Liberian Lassa virus genomes. INTERPRETATION: The large amount of novel genomic diversity of Lassa virus observed in the Liberian cases emphasises the need to match deployed diagnostic capabilities with locally circulating strains and underscores the importance of evaluating cross-lineage protection in the development of vaccines and therapeutics. FUNDING: Defense Biological Product Assurance Office of the US Department of Defense and the Armed Forces Health Surveillance Branch and its Global Emerging Infections Surveillance and Response Section.


Asunto(s)
Fiebre de Lassa/epidemiología , Fiebre de Lassa/virología , Virus Lassa/genética , Genoma Viral , Genómica/métodos , Genotipo , Humanos , Fiebre de Lassa/diagnóstico , Virus Lassa/clasificación , Liberia/epidemiología , Filogenia , Vigilancia en Salud Pública
5.
Lancet Infect Dis ; 19(6): 648-657, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000464

RESUMEN

BACKGROUND: The real-time generation of information about pathogen genomes has become a vital goal for transmission analysis and characterisation in rapid outbreak responses. In response to the recently established genomic capacity in the Democratic Republic of the Congo, we explored the real-time generation of genomic information at the start of the 2018 Ebola virus disease (EVD) outbreak in North Kivu Province. METHODS: We used targeted-enrichment sequencing to produce two coding-complete Ebola virus genomes 5 days after declaration of the EVD outbreak in North Kivu. Subsequent sequencing efforts yielded an additional 46 genomes. Genomic information was used to assess early transmission, medical countermeasures, and evolution of Ebola virus. FINDINGS: The genomic information demonstrated that the EVD outbreak in the North Kivu and Ituri Provinces was distinct from the 2018 EVD outbreak in Équateur Province of the Democratic Republic of the Congo. Primer and probe mismatches to Ebola virus were identified in silico for all deployed diagnostic PCR assays, with the exception of the Cepheid GeneXpert GP assay. INTERPRETATION: The first two coding-complete genomes provided actionable information in real-time for the deployment of the rVSVΔG-ZEBOV-GP Ebola virus envelope glycoprotein vaccine, available therapeutics, and sequence-based diagnostic assays. Based on the mutations identified in the Ebola virus surface glycoprotein (GP12) observed in all 48 genomes, deployed monoclonal antibody therapeutics (mAb114 and ZMapp) should be efficacious against the circulating Ebola virus variant. Rapid Ebola virus genomic characterisation should be included in routine EVD outbreak response procedures to ascertain efficacy of medical countermeasures. FUNDING: Defense Biological Product Assurance Office.


Asunto(s)
Anticuerpos Monoclonales/genética , Antivirales/uso terapéutico , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/genética , Genómica , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/epidemiología , República Democrática del Congo/epidemiología , Brotes de Enfermedades , Humanos , Contramedidas Médicas , Estudios Retrospectivos
6.
Lancet Infect Dis ; 19(6): 641-647, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000465

RESUMEN

BACKGROUND: The 2018 Ebola virus disease (EVD) outbreak in Équateur Province, Democratic Republic of the Congo, began on May 8, and was declared over on July 24; it resulted in 54 documented cases and 33 deaths. We did a retrospective genomic characterisation of the outbreak and assessed potential therapeutic agents and vaccine (medical countermeasures). METHODS: We used target-enrichment sequencing to produce Ebola virus genomes from samples obtained in the 2018 Équateur Province outbreak. Combining these genomes with genomes associated with known outbreaks from GenBank, we constructed a maximum-likelihood phylogenetic tree. In-silico analyses were used to assess potential mismatches between the outbreak strain and the probes and primers of diagnostic assays and the antigenic sites of the experimental rVSVΔG-ZEBOV-GP vaccine and therapeutics. An in-vitro flow cytometry assay was used to assess the binding capability of the individual components of the monoclonal antibody cocktail ZMapp. FINDINGS: A targeted sequencing approach produced 16 near-complete genomes. Phylogenetic analysis of these genomes and 1011 genomes from GenBank revealed a distinct cluster, confirming a new Ebola virus variant, for which we propose the name "Tumba". This new variant appears to have evolved at a slower rate than other Ebola virus variants (0·69 × 10-3 substitutions per site per year with "Tumba" vs 1·06 × 10-3 substitutions per site per year without "Tumba"). We found few sequence mismatches in the assessed assay target regions and antigenic sites. We identified nine amino acid changes in the Ebola virus surface glycoprotein, of which one resulted in reduced binding of the 13C6 antibody within the ZMapp cocktail. INTERPRETATION: Retrospectively, we show the feasibility of using genomics to rapidly characterise a new Ebola virus variant within the timeframe of an outbreak. Phylogenetic analysis provides further indications that these variants are evolving at differing rates. Rapid in-silico analyses can direct in-vitro experiments to quickly assess medical countermeasures. FUNDING: Defense Biological Product Assurance Office.


Asunto(s)
Antivirales/uso terapéutico , Brotes de Enfermedades , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/genética , Genómica , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/epidemiología , República Democrática del Congo/epidemiología , Humanos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...