Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2320, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485937

RESUMEN

SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. HCF-1 localization at chromatin is largely dependent on functional SET-26, whereas SET-26 is only minorly affected by loss of HCF-1, suggesting that SET-26 could recruit HCF-1 to chromatin. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo
2.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993207

RESUMEN

SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. We propose a model in which SET-26 recruits HCF-1 to chromatin in somatic cells, where they stabilize each other at the promoters of a subset of genes, particularly mitochondrial function genes, and regulate their expression. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA