Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochemistry ; 63(8): 958-968, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38426700

RESUMEN

Bispecific antibodies (BsAbs) are undergoing continued development for applications in oncology and autoimmune diseases. While increasing activity by having more than one targeting arm, most BsAb engineering employs single Fc engagement as monoclonal antibodies. Here, we designed a novel immunoglobulin gamma-1 (IgG1)-derived dual-Fc BsAb containing two Fc regions and two distinct asymmetric antigen binding arms comprising a Fab arm and another VHH domain. In conjunction with the knob-into-hole technology, dual-Fc BsAbs could be produced with a high yield and good stability. We explore how Fc engineering effects on dual-Fc constructs could boost the desired therapeutic efficacy. This new format enabled simultaneous bispecific binding to corresponding antigens. Furthermore, compared to the one-Fc control molecules, dual-Fc BsAbs were shown to increase the avidity-based binding to FcγRs to result in higher ADCC and ADCP activities by potent avidity via binding to two antigens and Fc receptors. Overall, this novel BsAb format with enhanced effector functionalities provides a new option for antibody-based immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Biespecíficos/química , Fragmentos Fc de Inmunoglobulinas/genética , Anticuerpos Monoclonales
2.
Curr Protoc ; 3(6): e801, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37358238

RESUMEN

Biological assays are essential tools in biomedical and pharmaceutical research. In simplest terms, such an assay is an analytical method used to measure or predict a response in a biological system in the presence of a given stimulus (e.g., drug). The inherent complexity involved in evaluating a biological system requires the use of rigorous and appropriate tools for data analysis. Linear and nonlinear regression models represent critically important statistical analyses used to define the relationships between variables of interest in biological systems. Recent challenges relating to the reproducibility of published data suggest the absence of standardized and routine use of statistics to support experimental results across a wide range of scientific disciplines. The current situation warrants an introductory review of basic regression concepts using current, practical examples, along with references to in-depth resources. The goal is to provide the necessary information to help standardize the analysis of biological assays in academic research and drug discovery and development, elevating their utility and increasing data transparency and reproducibility. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.


Asunto(s)
Bioensayo , Dinámicas no Lineales , Reproducibilidad de los Resultados , Análisis de Regresión , Bioensayo/métodos , Análisis de Datos
3.
Front Bioeng Biotechnol ; 11: 1298890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283167

RESUMEN

Objective: Bispecific antibodies (BsAbs) have demonstrated significant therapeutic impacts for the treatment of a broad spectrum of diseases that include oncology, auto-immune, and infectious diseases. However, the large-scale production of clinical batches of bispecific antibodies still has many challenges that include having low yield, poor stability, and laborious downstream purification processes. To address such challenges, we describe the optimization of the controlled Fab arm exchange (cFAE) process for the efficient generation of BsAbs. Methods: The process optimization of a large-scale good manufacturing practice (GMP) cFAE strategy to prepare BsAbs was based on screening the parameters of temperature, reduction, oxidation, and buffer exchange. We include critical quality standards for the reducing agent cysteamine hydrochloride. Results: This large-scale production protocol enabled the generation of bispecific antibodies with >90% exchange yield and at >95% purity. The subsequent downstream processing could use typical mAb procedures. Furthermore, we demonstrated that the bispecific generation protocol can be scaled up to ∼60 L reaction scale using parental monoclonal antibodies that were expressed in a 200 L bioreactor. Conclusion: We presented a robust development strategy for the cFAE process that can be used for a larger scale GMP BsAb production.

4.
J Biol Chem ; 296: 100641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839159

RESUMEN

A bispecific antibody (BsAb) targeting the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) pathways represents a novel approach to overcome resistance to targeted therapies in patients with non-small cell lung cancer. In this study, we sequentially screened a panel of BsAbs in a combinatorial approach to select the optimal bispecific molecule. The BsAbs were derived from different EGFR and MET parental monoclonal antibodies. Initially, molecules were screened for EGFR and MET binding on tumor cell lines and lack of agonistic activity toward MET. Hits were identified and further screened based on their potential to induce untoward cell proliferation and cross-phosphorylation of EGFR by MET via receptor colocalization in the absence of ligand. After the final step, we selected the EGFR and MET arms for the lead BsAb and added low fucose Fc engineering to generate amivantamab (JNJ-61186372). The crystal structure of the anti-MET Fab of amivantamab bound to MET was solved, and the interaction between the two molecules in atomic details was elucidated. Amivantamab antagonized the hepatocyte growth factor (HGF)-induced signaling by binding to MET Sema domain and thereby blocking HGF ß-chain-Sema engagement. The amivantamab EGFR epitope was mapped to EGFR domain III and residues K443, K465, I467, and S468. Furthermore, amivantamab showed superior antitumor activity over small molecule EGFR and MET inhibitors in the HCC827-HGF in vivo model. Based on its unique mode of action, amivantamab may provide benefit to patients with malignancies associated with aberrant EGFR and MET signaling.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Descubrimiento de Drogas , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas c-met/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Proteins ; 88(5): 689-697, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31702857

RESUMEN

Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel "2Fc" mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos de Histocompatibilidad Clase I/química , Fragmentos Fab de Inmunoglobulinas/química , Inmunoglobulina G/química , Receptores Fc/química , Receptores de IgG/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Expresión Génica , Células HEK293 , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Ingeniería de Proteínas/métodos , Receptores Fc/genética , Receptores Fc/inmunología , Receptores de IgG/genética , Receptores de IgG/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Virus Sincitiales Respiratorios/química , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/metabolismo
6.
Antibodies (Basel) ; 8(4)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816964

RESUMEN

Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure-function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.

7.
Monoclon Antib Immunodiagn Immunother ; 38(6): 242-254, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31825302

RESUMEN

Although CD3 T cell redirecting antibodies have been successfully utilized for the treatment of hematological malignancies (blinatumomab), the T cell signaling pathways induced by these molecules are incompletely understood. To gain insight into the mechanism of action for T cell redirection antibodies, we created a novel murine CD3xEpCAM bispecific antibody that incorporates a silent Fc to dissect function and signaling of murine CD8 OT1 T cells upon stimulation. T cell-mediated cytotoxicity, cytokine secretion, expression of activation markers, and proliferation were directly induced in T cells treated with the novel CD3xEpCAM bispecific molecule in vitro in the presence of epithelial cell adhesion molecule (EpCAM) expressing tumor cells. Nanostring analysis showed that CD3xEpCAM induced a gene expression profile that resembled antigen-mediated activation, although the magnitude was lower than that of the antigen-induced response. In addition, this CD3xEpCAM bispecific antibody exhibited in vivo efficacy. This is the first study that investigates both in vitro and in vivo murine CD8 T cell function and signaling induced by a CD3xEpCAM antibody having a silent Fc to delineate differences between antigen-independent and antigen-specific T cell activation. These findings expand the understanding of T cell function and signaling induced by CD3 redirection bispecific antibodies and may help to develop more efficacious CD3 redirection therapeutics for cancer treatment, particularly for solid tumors.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Complejo CD3/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Complejo CD3/genética , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/genética , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Ratones , Neoplasias/terapia , Transducción de Señal/inmunología
8.
MAbs ; 11(6): 1012-1024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31242061

RESUMEN

T cell redirection mediated by bispecific antibodies (BsAbs) is a promising cancer therapy. Dual antigen binding is necessary for potent T cell redirection and is influenced by the structural characteristics of a BsAb, which are dependent on its IgG subclass. In this study, model BsAbs targeting CD19xCD3 were generated in variants of IgG1, IgG2, and IgG4 carrying Fc mutations that reduce FcγR interaction, and two chimeric IgG subclasses termed IgG1:2 and IgG4:2, in which the IgG1- or IgG4-F(ab)2 are grafted on an IgG2 Fc. Molecules containing an IgG2 or IgG4-F(ab)2 domain were confirmed to be the most structurally compact molecules. All BsAbs were shown to bind both of their target proteins (and corresponding cells) equally well. However, CD19xCD3 IgG2 did not bind both antigens simultaneously as measured by the absence of cellular clustering of T cells with target cells. This translated to a reduced potency of IgG2 BsAbs in T-cell redirection assays. The activity of IgG2 BsAbs was fully restored in the chimeric subclasses IgG4:2 and IgG1:2. This confirmed the major contribution of the F(ab)2 region to the BsAb's functional activity and demonstrated that function of BsAbs can be modulated by engineering molecules combining different Fc and F(ab)2 domains. Abbreviations: ADCC: Antibody-dependent cellular cytotoxicity; AlphaScreenTM: Amplified Luminescent Proximity Homogeneous Assay Screening; ANOVA: Analysis of variance; BiTE: bispecific T-cell engager; BSA: bovine serum albumin; BsAb: bispecific antibody; cFAE: controlled Fab-arm exchange; CDC: complement-dependent cellular cytotoxicity; CIEX: cation-exchange; CIR: chimeric immune receptor; DPBS: Dulbecco's phosphate-buffered saline; EC50 value: effective concentration to reach half-maximum effect; EGFR: epidermal growth factor receptor; EI: expansion index (RAt=x/RAt=0); FACS: fluorescence-activated cell sorting; FVD: fixable viability dye; HI-HPLC: hydrophobic interaction HPLC; HI-FBS: heat-inactivated fetal bovine serum; HPLC: high-pressure liquid chromatography; IC50 value: effective concentration to reach half-maximum inhibition; IQ: Inhibition Quotient; IS: immunological synapse; MES: 2-(N-morpholino)ethanesulfonic acid; R-PE: recombinant phycoerythrin; RA: red area in µm2/well; RD: receptor density; RFP: red fluorescent protein; Rg: radius of gyration; RSV: respiratory syncytial virus; SAXS: small-angle x-ray scattering; scFv: single-chain variable fragment; SD: standard deviation; SPR: surface plasmon resonance; WT: wild-type.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Antígenos CD19/inmunología , Complejo CD3/inmunología , Inmunoglobulina G/inmunología , Linfocitos T/inmunología , Anticuerpos Biespecíficos/genética , Antígenos CD19/genética , Complejo CD3/genética , Línea Celular , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Mutación , Linfocitos T/citología
9.
Drug Metab Dispos ; 46(12): 1900-1907, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30232177

RESUMEN

The serum half-life and clearance of therapeutic monoclonal antibodies (mAbs) are critical factors that impact their efficacy and optimal dosing regimen. The pH-dependent binding of an mAb to the neonatal Fc receptor (FcRn) has long been recognized as an important determinant of its pharmacokinetics. However, FcRn affinity alone is not a reliable predictor of mAb half-life, suggesting that other biologic or biophysical mechanisms must be accounted for. mAb thermal stability, which reflects its unfolding and aggregation propensities, may also relate to its pharmacokinetic properties. However, no rigorous statistical regression methods have been used to identify combinations of physical parameters that best predict biologic properties. In this work, a panel of eight mAbs with published human pharmacokinetic data were selected for biophysical analyses of FcRn binding and thermal stability. Biolayer interferometry was used to characterize FcRn/mAb binding at acidic and neutral pH, while differential scanning calorimetry was used to determine thermodynamic unfolding parameters. Individual binding or stability parameters were generally weakly correlated with half-life and clearance values. Least absolute shrinkage and selection operator regression was used to identify the combination of two parameters with the best correlation to half-life and clearance as being the FcRn binding response at pH 7.0 and the change in heat capacity. Leave-one-out subsampling yielded a root mean square difference between observed and predicted half-life of just 2.7 days (16%). Thus, the incorporation of multiple biophysical parameters into a cohesive model may facilitate early-stage prediction of in vivo half-life and clearance based on simple in vitro experiments.


Asunto(s)
Anticuerpos Monoclonales/sangre , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/sangre , Modelos Biológicos , Receptores Fc/metabolismo , Fenómenos Biofísicos , Semivida , Humanos , Inactivación Metabólica , Cinética , Aprendizaje Automático , Valor Predictivo de las Pruebas , Unión Proteica
10.
Mol Metab ; 10: 87-99, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29453154

RESUMEN

OBJECTIVE: Insulin resistance is a key feature of Type 2 Diabetes (T2D), and improving insulin sensitivity is important for disease management. Allosteric modulation of the insulin receptor (IR) with monoclonal antibodies (mAbs) can enhance insulin sensitivity and restore glycemic control in animal models of T2D. METHODS: A novel human mAb, IRAB-A, was identified by phage screening using competition binding and surface plasmon resonance assays with the IR extracellular domain. Cell based assays demonstrated agonist and sensitizer effects of IRAB-A on IR and Akt phosphorylation, as well as glucose uptake. Lean and diet-induced obese mice were used to characterize single-dose in vivo pharmacological effects of IRAB-A; multiple-dose IRAB-A effects were tested in obese mice. RESULTS: In vitro studies indicate that IRAB-A exhibits sensitizer and agonist properties distinct from insulin on the IR and is translated to downstream signaling and function; IRAB-A bound specifically and allosterically to the IR and stabilized insulin binding. A single dose of IRAB-A given to lean mice rapidly reduced fed blood glucose for approximately 2 weeks, with concomitant reduced insulin levels suggesting improved insulin sensitivity. Phosphorylated IR (pIR) from skeletal muscle and liver were increased by IRAB-A; however, phosphorylated Akt (pAkt) levels were only elevated in skeletal muscle and not liver vs. control; immunochemistry analysis (IHC) confirmed the long-lived persistence of IRAB-A in skeletal muscle and liver. Studies in diet-induced obese (DIO) mice with IRAB-A reduced fed blood glucose and insulinemia yet impaired glucose tolerance and led to protracted insulinemia during a meal challenge. CONCLUSION: Collectively, the data suggest IRAB-A acts allosterically on the insulin receptor acting non-competitively with insulin to both activate the receptor and enhance insulin signaling. While IRAB-A produced a decrease in blood glucose in lean mice, the data in DIO mice indicated an exacerbation of insulin resistance; these data were unexpected and suggested the interplay of complex unknown pharmacology. Taken together, this work suggests that IRAB-A may be an important tool to explore insulin receptor signaling and pharmacology.


Asunto(s)
Sitio Alostérico , Anticuerpos Monoclonales/farmacología , Hipoglucemiantes/farmacología , Receptor de Insulina/agonistas , Células 3T3 , Regulación Alostérica , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Glucemia/metabolismo , Línea Celular Tumoral , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/inmunología , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Receptor de Insulina/química , Receptor de Insulina/inmunología , Transducción de Señal
11.
Immunol Lett ; 197: 1-8, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29476755

RESUMEN

In therapeutic antibody discovery and early development, mice and cynomolgus monkey are used as animal models to assess toxicity, efficacy and other properties of candidate molecules. As more candidate antibodies are based on human immunoglobulin (IgG) subclasses, many strategies are pursued to simulate the human system in the test animal. However, translation rate from a successful preclinical trial to an approved drug is extremely low. This may partly be due to differences in interaction of human IgG based candidate molecules to endogenous Fcγ receptors of model animals in comparison to those of human Fcγ receptors. In this study, we compare binding characteristics of human IgG subclasses commonly used in drug development (IgG1, IgG2, IgG4) and their respective Fc silent versions (IgG1σ, IgG2σ, IgG4 PAA) to human, mouse, and cynomolgus monkey Fcγ receptors. To control interactions between Fab and Fc domains, the test IgGs all have the same variable region sequences. We found distinct variations of interaction of human IgG subclasses to model animal Fcγ receptors in comparison to their human counterparts. Particularly, cynomolgus monkey Fcγ receptors showed consistently tighter binding to human IgGs than human Fcγ receptors. Moreover, the presumably Fc silent human IgG4 PAA framework bound to cynomolgus monkey FcγRI with nanomolar affinity while only very weak binding was observed for the human FcγRI. Our results highlighted the need for a thorough in vitro affinity characterization of candidate IgGs against model animal Fcγ receptors and careful design of preclinical studies.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Isotipos de Inmunoglobulinas/metabolismo , Inmunoterapia/métodos , Receptores de IgG/metabolismo , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/uso terapéutico , Región Variable de Inmunoglobulina/genética , Macaca fascicularis , Ratones , Unión Proteica , Investigación Biomédica Traslacional
12.
MAbs ; 10(3): 463-475, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29359992

RESUMEN

Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Receptores de IgG/inmunología , Receptores OX40/antagonistas & inhibidores , Anticuerpos Monoclonales/inmunología , Humanos , Receptores OX40/inmunología
13.
J Biol Chem ; 293(2): 651-661, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29150443

RESUMEN

Bispecific antibodies (bsAbs) combine the antigen specificities of two distinct Abs and demonstrate therapeutic promise based on novel mechanisms of action. Among the many platforms for creating bsAbs, controlled Fab-arm exchange (cFAE) has proven useful based on minimal changes to native Ab structure and the simplicity with which bsAbs can be formed from two parental Abs. Despite a published protocol for cFAE and its widespread use in the pharmaceutical industry, the reaction mechanism has not been determined. Knowledge of the mechanism could lead to improved yields of bsAb at faster rates as well as foster adoption of process control. In this work, a combination of Förster resonance energy transfer (FRET), nonreducing SDS-PAGE, and strategic mutation of the Ab hinge region was employed to identify and characterize the individual steps of cFAE. Fluorescence correlation spectroscopy (FCS) was used to determine the affinity of parental (homodimer) and bispecific (heterodimer) interactions within the CH3 domain, further clarifying the thermodynamic basis for bsAb formation. The result is a clear sequence of events with rate constants that vary with experimental conditions, where dissociation of the K409R parental Ab into half-Ab controls the rate of the reaction.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Fragmentos Fab de Inmunoglobulinas/metabolismo , Animales , Humanos , Cinética , Espectrometría de Fluorescencia
14.
Sci Rep ; 7(1): 15521, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138497

RESUMEN

Methods to rapidly generate high quality bispecific antibodies (BsAb) having normal half-lives are critical for therapeutic programs. Here, we identify 3 mutations (T307P, L309Q, and Q311R or "TLQ") in the Fc region of human IgG1 which disrupt interaction with protein A while enhancing interaction with FcRn. The mutations are shown to incrementally alter the pH at which a mAb elutes from protein A affinity resin. A BsAb comprised of a TLQ mutant and a wild-type IgG1 can be efficiently separated from contaminating parental mAbs by differential protein A elution starting from either a) purified parental mAbs, b) in-supernatant crossed parental mAbs, or c) co-transfected mAbs. We show that the Q311R mutation confers enhanced FcRn interaction in vitro, and Abs harboring either the Q311R or TLQ mutations have serum half-lives as long as wild-type human IgG1. The mutant Abs have normal thermal stability and Fcγ receptor interactions. Together, the results lead to a method for high-throughput generation of BsAbs suitable for in vivo studies.


Asunto(s)
Anticuerpos Biespecíficos/genética , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Mutación , Receptores de IgG/química , Proteína Estafilocócica A/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/aislamiento & purificación , Sitios de Unión , Cromatografía de Afinidad , Expresión Génica , Células HEK293 , Semivida , Humanos , Concentración de Iones de Hidrógeno , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/química , Inmunoglobulina G/aislamiento & purificación , Cinética , Ratones , Modelos Moleculares , Unión Proteica , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteína Estafilocócica A/inmunología , Proteína Estafilocócica A/metabolismo
15.
MAbs ; 9(8): 1306-1316, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28898162

RESUMEN

The increased number of bispecific antibodies (BsAb) under therapeutic development has resulted in a need for mouse surrogate BsAbs. Here, we describe a one-step method for generating highly pure mouse BsAbs suitable for in vitro and in vivo studies. We identify two mutations in the mouse IgG2a and IgG2b Fc region: one that eliminates protein A binding and one that enhances protein A binding by 8-fold. We show that BsAbs harboring these mutations can be purified from the residual parental monoclonal antibodies in one step using protein A affinity chromatography. The structural basis for the effects of these mutations was analyzed by X-ray crystallography. While the mutation that disrupted protein A binding also inhibited FcRn interaction, a bispecific mutant in which one subunit retained the ability to bind protein A could still interact with FcRn. Pharmacokinetic analysis of the serum half-lives of the mutants showed that the mutant BsAb had a serum half-life comparable to a wild-type Ab. The results describe a rapid method for generating panels of mouse BsAbs that could be used in mouse studies.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Receptores Fc/inmunología , Proteína Estafilocócica A/inmunología , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/metabolismo , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Cristalografía por Rayos X , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/inmunología , Proteínas Mutantes/metabolismo , Mutación , Unión Proteica/inmunología , Dominios Proteicos , Receptores Fc/metabolismo , Proteína Estafilocócica A/metabolismo
16.
MAbs ; 9(7): 1129-1142, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28758875

RESUMEN

Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to identify Fc mutations that facilitate antibody multimerization on the cell surface directly. From the analyses of the crystal packing of IgG1 structures, we identified a novel set of Fc mutations, T437R and K248E, that facilitated antibody multimerization upon binding to antigens on cell surface. In a NF-κB reporter assay, the engineered T437R/K248E mutations could facilitate enhanced agonism of an anti-OX40 antibody without the dependence on FcγRIIB crosslinking. Nonetheless, the presence of cells expressing FcγRIIB could facilitate a boost of the agonism of the engineered antibody with mutations on IgG1 Fc, but not on the silent IgG2σ Fc. The Fc engineered antibody also showed enhanced effector functions, including antibody-dependent cell-meditated cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity, depending on the IgG subtypes. Also, the engineered antibodies showed normal FcRn binding and pharmacokinetic profiles in mice. In summary, this study elucidated a novel Fc engineering approach to promote antibody multimerization on a cell surface, which could enhance agonism and improve effector function for anti-TNFR antibodies as well as other therapeutic antibodies.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoterapia/métodos , Ingeniería de Proteínas/métodos , Receptores OX40/agonistas , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Ratones , Mutación
17.
Sci Rep ; 7(1): 2476, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28559564

RESUMEN

Therapeutic concepts exploiting tumor-specific antibodies are often established in pre-clinical xenograft models using immuno-deficient mice. More complex therapeutic paradigms, however, warrant the use of immuno-competent mice, that more accurately capture the relevant biology that is being exploited. These models require the use of (surrogate) mouse or rat antibodies to enable optimal interactions with murine effector molecules. Immunogenicity is furthermore decreased, allowing longer-term treatment. We recently described controlled Fab-arm exchange (cFAE) as an easy-to-use method for the generation of therapeutic human IgG1 bispecific antibodies (bsAb). To facilitate the investigation of dual-targeting concepts in immuno-competent mice, we now applied and optimized our method for the generation of murine bsAbs. We show that the optimized combinations of matched point-mutations enabled efficient generation of murine bsAbs for all subclasses studied (mouse IgG1, IgG2a and IgG2b; rat IgG1, IgG2a, IgG2b, and IgG2c). The mutations did not adversely affect the inherent effector functions or pharmacokinetic properties of the corresponding subclasses. Thus, cFAE can be used to efficiently generate (surrogate) mouse or rat bsAbs for pre-clinical evaluation in immuno-competent rodents.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Inmunoglobulina G/inmunología , Neoplasias/terapia , Animales , Anticuerpos Biespecíficos/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/uso terapéutico , Ratones , Modelos Animales , Neoplasias/genética , Neoplasias/inmunología , Mutación Puntual/genética , Mutación Puntual/inmunología , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Biochemistry ; 56(17): 2251-2260, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28394577

RESUMEN

Submicrometer aggregates are frequently present at low levels in antibody-based therapeutics. Although intuition suggests that the fraction of the aggregate or the size of the aggregate present might correlate with deleterious clinical properties or formulation difficulties, it has been challenging to demonstrate which aggregate states, if any, trigger specific biological effects. One source of uncertainty about the putative linkage between aggregation and safety or efficacy lies in the likelihood that noncovalent aggregation differs in ideal buffers versus in serum and biological tissues; self-association or association with other proteins may vary widely with environment. Therefore, methods for monitoring aggregation and aggregate behavior in biologically relevant matrices could provide a tool for better predicting aggregate-dependent clinical outcomes and provide a basis for antibody engineering prior to clinical studies. Here, we generate models for soluble aggregates of THIOMABs and a bispecific antibody (bsAb) of defined size and exploit fluorescence correlation spectroscopy to monitor their diffusion properties in serum and viscosity-matched buffers. The monomers, dimers, and trimers of both THIOMABs and a bsAb reveal a modest increase in diffusion time in serum greater than expected for an increase in viscosity alone. A mixture of larger aggregates containing mostly bsAb pentamers exhibits a marked increase in diffusion time in serum and much greater intrasample variability, consistent with significant aggregation or interactions with serum components. The results indicate that small aggregates of several IgG platforms are not likely to aggregate with serum components, but nanometer-scale aggregates larger than trimers can interact with the serum in an Ab-dependent manner.


Asunto(s)
Anticuerpos Biespecíficos/química , Proteínas Sanguíneas/química , Inmunoglobulina G/química , Agregado de Proteínas , Trastuzumab/química , Algoritmos , Anticuerpos Biespecíficos/efectos adversos , Anticuerpos Biespecíficos/análisis , Anticuerpos Biespecíficos/genética , Proteínas Sanguíneas/análisis , Reactivos de Enlaces Cruzados/farmacología , Difusión , Ditiotreitol/farmacología , Composición de Medicamentos , Glutaral/farmacología , Humanos , Hidrodinámica , Inmunoglobulina G/efectos adversos , Inmunoglobulina G/análisis , Inmunoglobulina G/genética , Peso Molecular , Tamaño de la Partícula , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Reproducibilidad de los Resultados , Solubilidad , Reactivos de Sulfhidrilo/farmacología , Trastuzumab/efectos adversos , Trastuzumab/análisis , Viscosidad
19.
Antibodies (Basel) ; 6(3)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548527

RESUMEN

Engineering of fragment crystallizable (Fc) domains of therapeutic immunoglobulin (IgG) antibodies to eliminate their immune effector functions while retaining other Fc characteristics has numerous applications, including blocking antigens on Fc gamma (Fcγ) receptor-expressing immune cells. We previously reported on a human IgG2 variant termed IgG2σ with barely detectable activity in antibody-dependent cellular cytotoxicity, phagocytosis, complement activity, and Fcγ receptor binding assays. Here, we extend that work to IgG1 and IgG4 antibodies, alternative subtypes which may offer advantages over IgG2 antibodies. In several in vitro and in vivo assays, the IgG1σ and IgG4σ variants showed equal or even lower Fc-related activities than the corresponding IgG2σ variant. In particular, IgG1σ and IgG4σ variants demonstrate complete lack of effector function as measured by antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and in vivo T-cell activation. The IgG1σ and IgG4σ variants showed acceptable solubility and stability, and typical human IgG1 pharmacokinetic profiles in human FcRn-transgenic mice and cynomolgus monkeys. In silico T-cell epitope analyses predict a lack of immunogenicity in humans. Finally, crystal structures and simulations of the IgG1σ and IgG4σ Fc domains can explain the lack of Fc-mediated immune functions. These variants show promise for use in those therapeutic antibodies and Fc fusions for which the Fc domain should be immunologically "silent".

20.
Diabetes ; 66(1): 206-217, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27797911

RESUMEN

A hallmark of type 2 diabetes is impaired insulin receptor (IR) signaling that results in dysregulation of glucose homeostasis. Understanding the molecular origins and progression of diabetes and developing therapeutics depend on experimental models of hyperglycemia, hyperinsulinemia, and insulin resistance. We present a novel monoclonal antibody, IRAB-B, that is a specific, potent IR antagonist that creates rapid and long-lasting insulin resistance. IRAB-B binds to the IR with nanomolar affinity and in the presence of insulin efficiently blocks receptor phosphorylation within minutes and is sustained for at least 3 days in vitro. We further confirm that IRAB-B antagonizes downstream signaling and metabolic function. In mice, a single dose of IRAB-B induces rapid onset of hyperglycemia within 6 h, and severe hyperglycemia persists for 2 weeks. IRAB-B hyperglycemia is normalized in mice treated with exendin-4, suggesting that this model can be effectively treated with a GLP-1 receptor agonist. Finally, a comparison of IRAB-B with the IR antagonist S961 shows distinct antagonism in vitro and in vivo. IRAB-B appears to be a powerful tool to generate both acute and chronic insulin resistance in mammalian models to elucidate diabetic pathogenesis and evaluate therapeutics.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Resistencia a la Insulina/fisiología , Receptor de Insulina/metabolismo , Animales , Western Blotting , Línea Celular , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología , Fosforilación , Unión Proteica , Receptor de Insulina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...