Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Food Sci Nutr ; 72(5): 713-719, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33292031

RESUMEN

This study demonstrates the applications of Bacillus coagulans in alcohol elimination. Bacillus coagulans has recently drawn tremendous interest in the food industry and medicine considering its great environmental tolerance and beneficial effects on improving gastrointestinal diseases. However, few scientific reports connect its utilities with alcohol elimination. In this study, we introduced the unique strain B. coagulans TCI711 for such exploration. TCI711 contained alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) by mass spectrum and resisted gastric acid and bile acid. Also, taking TCI711 capsules for a week can significantly improve alcohol metabolism in humans (breath alcohol level indicated 0 mg/kg in 2 h after drinking 75 mL of whisky). In brief, this exploratory research unveiled the potent applications of B. coagulans in alcohol elimination in humans.


Asunto(s)
Bacillus coagulans , Etanol/metabolismo , Probióticos , Bacillus coagulans/metabolismo , Ácidos y Sales Biliares , Humanos
2.
Dis Markers ; 2018: 8635329, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30344796

RESUMEN

The prevalence of hepatocellular carcinoma (HCC) is still high worldwide because liver diseases could develop into HCC. Recent reports indicate nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NAFLD&NASH) and primary biliary cirrhosis and primary sclerosing cholangitis (PBC&PSC) are significant of HCC. Therefore, understanding the cellular mechanisms of the pathogenesis and hepatocarcinogenesis from normal liver cells to HCC through NAFLD&NASH or PBC&PSC is a priority to prevent the progression of liver damage and reduce the risk of further complications. By the genetic and epigenetic data mining and the system identification through next-generation sequencing data and its corresponding DNA methylation profiles of liver cells in normal, NAFLD&NASH, PBC&PSC, and HCC patients, we identified the genome-wide real genetic and epigenetic networks (GENs) of normal, NAFLD&NASH, PBC&PSC, and HCC patients. In order to get valuable insight into these identified genome-wide GENs, we then applied a principal network projection method to extract the corresponding core GENs for normal liver cells, NAFLD&NASH, PBC&PSC, and HCC. By comparing the signal transduction pathways involved in the identified core GENs, we found that the hepatocarcinogenesis through NAFLD&NASH was induced through DNA methylation of HIST2H2BE, HSPB1, RPL30, and ALDOB and the regulation of miR-21 and miR-122, and the hepatocarcinogenesis through PBC&PSC was induced through DNA methylation of RPL23A, HIST2H2BE, TIMP1, IGF2, RPL30, and ALDOB and the regulation of miR-29a, miR-21, and miR-122. The genetic and epigenetic changes in the pathogenesis and hepatocarcinogenesis potentially serve as potential diagnostic biomarkers and/or therapeutic targets.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Epigénesis Genética , Neoplasias Hepáticas/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Metilación de ADN , Minería de Datos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA