Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virulence ; 11(1): 947-963, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32726182

RESUMEN

Staphylococcus aureus: with the sequence type (ST) 398 was previously associated with livestock carriage. However, in recent years livestock-independent S. aureus ST398 has emerged, representing a potential health risk for humans especially in nosocomial settings. Judged by whole-genome sequencing analyses, the livestock- and human originated strains belong to two different S. aureus ST398 clades but, to date, it was not known to what extent these clades differ in terms of actual virulence. Therefore, the objective of this study was to profile the exoproteomes of 30 representative S. aureus ST398 strains by mass spectrometry, to assess clade-specific differences in virulence factor secretion, and to correlate the identified proteins and their relative abundance to the strains' actual virulence. Although the human-originated strains are more heterogeneous at the genome level, our observations show that they are more homogeneous in terms of virulence factor production than the livestock-associated strains. To assess differences in virulence, infection models based on larvae of the wax moth Galleria mellonella and the human HeLa cell line were applied. Correlation of the exoproteome data to larval killing and toxicity toward HeLa cells uncovered critical roles of the staphylococcal Sbi, SpA, SCIN and CHIPS proteins in virulence. These findings were validated by showing that sbi or spa mutant bacteria are attenuated in G. mellonella and that the purified SCIN and CHIPS proteins are toxic for HeLa cells. Altogether, we show that exoproteome profiling allows the identification of critical determinants for virulence of livestock-associated and human-originated S. aureus ST398 strains.


Asunto(s)
Proteínas Bacterianas/análisis , Ganado/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Animales , Genoma Bacteriano , Células HeLa , Humanos , Larva/microbiología , Espectrometría de Masas , Mariposas Nocturnas/microbiología , Filogenia , Proteómica , Staphylococcus aureus/clasificación , Virulencia , Factores de Virulencia , Secuenciación Completa del Genoma
2.
J Glob Antimicrob Resist ; 22: 584-593, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32389792

RESUMEN

OBJECTIVES: Urinary tract infections (UTIs) caused by multidrug-resistant Escherichia coli have become a major medical concern. Old antibiotics such as fosfomycin have become an alternative therapeutic option due to their effectiveness and, as a result, fosfomycin is now used as a first-line drug for the treatment of UTIs in many countries. Despite low resistance rates, fosfomycin heteroresistance, defined as a phenomenon where subpopulations of bacteria are resistant to high antibiotic concentrations whereas most of the bacteria are susceptible, is an underestimated problem. METHODS: The frequency of heteroresistance in E. coli isolated from hospitalized patients in Brazil and its effect on susceptibility of E. coli in biofilms was studied and the isolates were molecularly characterized to reveal the mechanisms behind their fosfomycin heteroresistance using whole-genome sequencing. RESULTS: A higher frequency of fosfomycin heteroresistance compared with other studies was found. In biofilms, most heteroresistant isolates were less sensitive to fosfomycin than control isolates and showed overexpression of metabolic genes thereby increasing their survival rate. Molecular characterization showed that some resistant subpopulations derived from heteroresistant isolates had a defect in their fosfomycin uptake system caused by mutations in transporter and regulatory genes, whereas others overexpressed the murA gene. None to minor effects on bacterial fitness were observed. Oxidative stress protection, virulence and metabolic genes were differentially expressed in resistant subpopulations and heteroresistant isolates. CONCLUSION: Frequent detection of heteroresistance in UTIs may play a role in the failure of antibiotic treatments and should therefore be more carefully diagnosed.


Asunto(s)
Infecciones por Escherichia coli , Fosfomicina , Brasil , Escherichia coli/genética , Fosfomicina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas
3.
Microorganisms ; 7(11)2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698849

RESUMEN

Escherichia coli ST131 is a clinical challenge due to its multidrug resistant profile and successful global spread. They are often associated with complicated infections, particularly urinary tract infections (UTIs). Bacteriocins play an important role to outcompete other microorganisms present in the human gut. Here, we characterized bacteriocin-encoding plasmids found in ST131 isolates of patients suffering from a UTI using both short- and long-read sequencing. Colicins Ia, Ib and E1, and microcin V, were identified among plasmids that also contained resistance and virulence genes. To investigate if the potential transmission range of the colicin E1 plasmid is influenced by the presence of a resistance gene, we constructed a strain containing a plasmid which had both the colicin E1 and blaCMY-2 genes. No difference in transmission range was found between transformant and wild-type strains. However, a statistically significantly difference was found in adhesion and invasion ability. Bacteriocin-producing isolates from both ST131 and non-ST131 lineages were able to inhibit the growth of other E. coli isolates, including other ST131. In summary, plasmids harboring bacteriocins give additional advantages for highly virulent and resistant ST131 isolates, improving the ability of these isolates to compete with other microbiota for a niche and thereby increasing the risk of infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...