Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(11): 339, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898573

RESUMEN

Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.


Asunto(s)
Cistatinas , Ixodes , Animales , Cistatinas Salivales/química , Péptido Hidrolasas/metabolismo , Cisteína/metabolismo , Cistatinas/farmacología , Ixodes/química , Vertebrados , Catepsinas/metabolismo , Endopeptidasas/metabolismo
2.
Parasit Vectors ; 16(1): 242, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468955

RESUMEN

BACKGROUND: Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS: Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS: Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS: Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.


Asunto(s)
Hipersensibilidad a los Alimentos , Ixodes , Mordeduras de Garrapatas , Animales , Humanos , Pez Cebra/metabolismo , Saliva , Galactosa , Inmunoglobulina E , Hipersensibilidad a los Alimentos/etiología , Proteínas de Artrópodos , Inmunoglobulina M , Mamíferos
3.
Int Immunopharmacol ; 118: 110150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030115

RESUMEN

Despite constant advances in cancer research, the treatment of pancreatic adenocarcinoma remains extremely challenging. The intratumoral immunotherapy approach that was developed by our research group and was based on a combination of mannan-BAM, TLR ligands, and anti-CD40 antibody (MBTA) showed promising therapeutic effects in various murine tumor models, including a pancreatic adenocarcinoma model (Panc02). However, the efficacy of MBTA therapy in the Panc02 model was negatively correlated with tumor size at the time of therapy initiation. Here, we aimed to further improve the outcome of MBTA therapy in the Panc02 model using the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON). The combination of intratumoral MBTA therapy and intraperitoneal administration of DON resulted in the complete elimination of advanced Panc02 subcutaneous tumors (140.8 ± 46.8 mm3) in 50% of treated animals and was followed by development of long-term immune memory. In the bilateral Panc02 subcutaneous tumor model, we observed a significant reduction in tumor growth in both tumors as well as prolonged survival of treated animals. The appropriate timing and method of administration of DON were also addressed to maximize its therapeutic effects and minimize its side effects. In summary, our findings demonstrate that the intraperitoneal application of DON significantly improves the efficacy of intratumoral MBTA therapy in both advanced and bilateral Panc02 subcutaneous tumor murine models.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Glutamina/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Inmunoterapia/métodos , Línea Celular Tumoral , Neoplasias Pancreáticas
4.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 409-419, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37092969

RESUMEN

Iripin-4, one of the many salivary serpins from Ixodes ricinus ticks with an as-yet unexplained function, crystallized in two different structural conformations, namely the native partially relaxed state and the cleaved serpin. The native structure was solved at a resolution of 2.3 Šand the structure of the cleaved conformation was solved at 2.0 Šresolution. Furthermore, structural changes were observed when the reactive-centre loop transitioned from the native conformation to the cleaved conformation. In addition to this finding, it was confirmed that Glu341 represents a primary substrate-recognition site for the inhibitory mechanism. The presence of glutamate instead of the typical arginine in the P1 recognition site of all structurally characterized I. ricinus serpins (PDB entries 7b2t, 7pmu and 7ahp), except for the tyrosine in the P1 site of Iripin-2 (formerly IRS-2; PDB entry 3nda), would explain the absence of inhibition of the tested proteases that cleave their substrate after arginine. Further research on Iripin-4 should focus on functional analysis of this interesting serpin.


Asunto(s)
Ixodes , Serpinas , Animales , Serpinas/química , Conformación Proteica , Modelos Moleculares , Arginina
5.
Front Immunol ; 14: 1116324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756125

RESUMEN

Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.


Asunto(s)
Ixodes , Serpinas , Ratones , Animales , Serpinas/metabolismo , Células Endoteliales/metabolismo , Ixodes/metabolismo , Quimiocinas , Monocitos/metabolismo , Tripsina , Antiinflamatorios/farmacología
6.
Front Cell Infect Microbiol ; 12: 892770, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711658

RESUMEN

Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.


Asunto(s)
Serpinas , Garrapatas , Animales , Saliva/metabolismo , Glándulas Salivales/metabolismo , Inhibidores de Serina Proteinasa/fisiología , Serpinas/metabolismo , Garrapatas/metabolismo
7.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502392

RESUMEN

Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 Å resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.


Asunto(s)
Coagulación Sanguínea/fisiología , Activación de Complemento/fisiología , Ixodes/metabolismo , Serpinas/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Activación de Complemento/efectos de los fármacos , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Eritrocitos/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Ixodes/enzimología , Ixodes/genética , Enfermedad de Lyme , Ninfa , Saliva/química , Glándulas Salivales/metabolismo , Serpinas/ultraestructura
8.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1183-1196, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473088

RESUMEN

Iripin-5 is the main Ixodes ricinus salivary serpin, which acts as a modulator of host defence mechanisms by impairing neutrophil migration, suppressing nitric oxide production by macrophages and altering complement functions. Iripin-5 influences host immunity and shows high expression in the salivary glands. Here, the crystal structure of Iripin-5 in the most thermodynamically stable state of serpins is described. In the reactive-centre loop, the main substrate-recognition site of Iripin-5 is likely to be represented by Arg342, which implies the targeting of trypsin-like proteases. Furthermore, a computational structural analysis of selected Iripin-5-protease complexes together with interface analysis revealed the most probable residues of Iripin-5 involved in complex formation.


Asunto(s)
Antiinflamatorios , Inhibidores Enzimáticos , Ixodes/metabolismo , Serpinas , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Células Cultivadas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Eritrocitos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Neutrófilos , Conejos , Serpinas/química , Serpinas/aislamiento & purificación
9.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34439097

RESUMEN

Immunotherapy has become an essential component in cancer treatment. However, the majority of solid metastatic cancers, such as pheochromocytoma, are resistant to this approach. Therefore, understanding immune cell composition in primary and distant metastatic tumors is important for therapeutic intervention and diagnostics. Combined mannan-BAM, TLR ligand, and anti-CD40 antibody-based intratumoral immunotherapy (MBTA therapy) previously resulted in the complete eradication of murine subcutaneous pheochromocytoma and demonstrated a systemic antitumor immune response in a metastatic model. Here, we further evaluated this systemic effect using a bilateral pheochromocytoma model, performing MBTA therapy through injection into the primary tumor and using distant (non-injected) tumors to monitor size changes and detailed immune cell infiltration. MBTA therapy suppressed the growth of not only injected but also distal tumors and prolonged MBTA-treated mice survival. Our flow cytometry analysis showed that MBTA therapy led to increased recruitment of innate and adaptive immune cells in both tumors and the spleen. Moreover, adoptive CD4+ T cell transfer from successfully MBTA-treated mice (i.e., subcutaneous pheochromocytoma) demonstrates the importance of these cells in long-term immunological memory. In summary, this study unravels further details on the systemic effect of MBTA therapy and its use for tumor and metastasis reduction or even elimination.

10.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065290

RESUMEN

The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Cistatinas/metabolismo , Sistema Digestivo/metabolismo , Ixodes/metabolismo , Garrapatas/metabolismo , Secuencia de Aminoácidos , Animales , Catepsina L/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Filogenia , Proteolisis
11.
Cancer Immunol Immunother ; 70(11): 3303-3312, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33855601

RESUMEN

Pancreatic adenocarcinoma is one of the leading causes of cancer-related deaths, and its therapy remains a challenge. Our proposed therapeutic approach is based on the intratumoral injections of mannan-BAM, toll-like receptor ligands, and anti-CD40 antibody (thus termed MBTA therapy), and has shown promising results in the elimination of subcutaneous murine melanoma, pheochromocytoma, colon carcinoma, and smaller pancreatic adenocarcinoma (Panc02). Here, we tested the short- and long-term effects of MBTA therapy in established subcutaneous Panc02 tumors two times larger than in previous study and bilateral Panc02 models as well as the roles of CD4+ and CD8+ T lymphocytes in this therapy. The MBTA therapy resulted in eradication of 67% of Panc02 tumors with the development of long-term memory as evidenced by the rejection of Panc02 cells after subcutaneous and intracranial transplantations. The initial Panc02 tumor elimination is not dependent on the presence of CD4+ T lymphocytes, although these cells seem to be important in long-term survival and resistance against tumor retransplantation. The resistance was revealed to be antigen-specific due to its inability to reject B16-F10 melanoma cells. In the bilateral Panc02 model, MBTA therapy manifested a lower therapeutic response. Despite numerous combinations of MBTA therapy with other therapeutic approaches, our results show that only simultaneous application of MBTA therapy into both tumors has potential for the treatment of the bilateral Panc02 model.


Asunto(s)
Adenocarcinoma/patología , Antígenos CD40/antagonistas & inhibidores , Imidazoles/farmacología , Lipopolisacáridos/farmacología , Mananos/farmacología , Neoplasias Pancreáticas/patología , Poli I-C/farmacología , Ácidos Teicoicos/farmacología , Adenocarcinoma/inmunología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inmunoterapia , Ligandos , Ratones , Neoplasias Pancreáticas/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Receptores Toll-Like , Neoplasias Pancreáticas
12.
Front Immunol ; 12: 626200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732248

RESUMEN

Tick saliva is a rich source of pharmacologically and immunologically active molecules. These salivary components are indispensable for successful blood feeding on vertebrate hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes, suppression of the T helper type 1 immune response, and induction of regulatory T cell differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic blood coagulation pathway and reduced the production of pro-inflammatory cytokine interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In addition to its functional characterization, we present the crystal structure of cleaved Iripin-3 at 1.95 Å resolution. Iripin-3 proved to be a pluripotent salivary serpin with immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities observed in vitro needs to be supported by appropriate in vivo experiments.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factores Inmunológicos/farmacología , Proteínas de Insectos/farmacología , Ixodes/metabolismo , Saliva/metabolismo , Proteínas y Péptidos Salivales/farmacología , Animales , Anticoagulantes/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Cobayas , Humanos , Factores Inmunológicos/aislamiento & purificación , Proteínas de Insectos/aislamiento & purificación , Activación de Linfocitos/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/farmacología , Conejos , Proteínas y Péptidos Salivales/aislamiento & purificación , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo
13.
Int J Mol Sci ; 22(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477394

RESUMEN

Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.


Asunto(s)
Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/uso terapéutico , Saliva/metabolismo , Animales , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Saliva/química , Glándulas Salivales/metabolismo , Garrapatas/metabolismo , Transcriptoma/genética
14.
Parasite Immunol ; 43(5): e12807, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33135186

RESUMEN

'Omics' technologies have facilitated the identification of hundreds to thousands of tick molecules that mediate tick feeding and play a role in the transmission of tick-borne diseases. Deep sequencing methodologies have played a key role in this knowledge accumulation, profoundly facilitating the study of the biology of disease vectors lacking reference genomes. For example, the nucleotide sequences of the entire set of tick salivary effectors, the so-called tick 'sialome', now contain at least one order of magnitude more transcript sequences compared to similar projects based on Sanger sequencing. Tick feeding is a complex and dynamic process, and while the dynamic 'sialome' is thought to mediate tick feeding success, exactly how transcriptome dynamics relate to tick-host-pathogen interactions is still largely unknown. The identification and, importantly, the functional analysis of the tick 'sialome' is expected to shed light on this 'black box'. This information will be crucial for developing strategies to block pathogen transmission, not only for anti-tick vaccine development but also the discovery and development of new, pharmacologically active compounds for human diseases.


Asunto(s)
Proteómica , Glándulas Salivales/fisiología , Garrapatas/fisiología , Transcriptoma/fisiología , Animales , Genoma/fisiología , Interacciones Huésped-Patógeno , Humanos , Garrapatas/genética
15.
Int J Mol Sci, v. 22, n. 892, jan. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3482

RESUMEN

Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick–host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.

16.
FASEB J ; 34(2): 3336-3346, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31916652

RESUMEN

In Type 1 Diabetes Mellitus (T1DM), leukocyte infiltration of the pancreatic islets and the resulting immune-mediated destruction of beta cells precede hyperglycemia and clinical disease symptoms. In this context, the role of the pancreatic endothelium as a barrier for autoimmunity- and inflammation-related destruction of the islets is not well studied. Here, we identified Robo4, expressed on endothelial cells, as a regulator of pancreatic vascular endothelial permeability during autoimmune diabetes. Circulating levels of Robo4 were upregulated in mice subjected to the Multiple Low-Dose Streptozotocin (MLDS) model of diabetes. Upon MLDS induction, Robo4-deficiency resulted in increased pancreatic vascular permeability, leukocyte infiltration to the islets and islet apoptosis, associated with reduced insulin levels and faster diabetes development. On the contrary, in vivo administration of Slit2 in mice modestly delayed the emergence of hyperglycaemia and ameliorated islet inflammation in MLDS-induced diabetes. Thus, Robo4-mediated endothelial barrier integrity reduces insulitis and islet destruction in autoimmune diabetes. Our findings highlight the importance of the endothelium as gatekeeper of pancreatic inflammation during T1DM development and may pave the way for novel Robo4-related therapeutic approaches for autoimmune diabetes.


Asunto(s)
Permeabilidad Capilar , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliales/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis , Línea Celular , Células Cultivadas , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/patología , Células Endoteliales/patología , Humanos , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Receptores de Superficie Celular/sangre , Receptores de Superficie Celular/genética
17.
Biochim Biophys Acta Proteins Proteom ; 1868(2): 140336, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31816416

RESUMEN

Ticks must durably suppress vertebrate host responses (hemostasis, inflammation, immunity) to avoid rejection and act as vectors of many pathogenic microorganisms that cause disease in humans and animals. Transcriptomics and proteomics studies have been used to study tick-host-pathogen interactions and have facilitated the systematic characterization of salivary composition and molecular dynamics throughout tick feeding. Tick saliva contains a complement of protease inhibitors that are differentially produced during feeding, many of which inhibit blood coagulation, platelet aggregation, vasodilation, and immunity. Here we focus on two major groups of protease inhibitors, the small molecular weight Kunitz inhibitors and cystatins. We discuss their role in tick-host-pathogen interactions, how they mediate the interaction between ticks and their hosts, and how they might be exploited both by pathogens to invade hosts and as candidates for the treatment of various human pathologies.


Asunto(s)
Interacciones Huésped-Parásitos , Inhibidores de Proteasas/metabolismo , Saliva/metabolismo , Glándulas Salivales/metabolismo , Animales , Aprotinina/química , Aprotinina/metabolismo , Cistatinas/química , Cistatinas/metabolismo , Proteómica , Garrapatas , Transcriptoma
18.
Semin Oncol ; 46(4-5): 385-392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31739997

RESUMEN

There is no doubt that immunotherapy lies in the spotlight of current cancer research and clinical trials. However, there are still limitations in the treatment response in certain types of tumors largely due to the presence of the complex network of immunomodulatory and immunosuppressive pathways. These limitations are not likely to be overcome by current immunotherapeutic options, which often target isolated steps in immune pathways preferentially involved in adaptive immunity. Recently, we have developed an innovative anti-cancer immunotherapeutic strategy that initially elicits a strong innate immune response with subsequent activation of adaptive immunity in mouse models. Robust primary innate immune response against tumor cells is induced by toll-like receptor ligands and anti-CD40 agonistic antibodies combined with the phagocytosis-stimulating ligand mannan, anchored to a tumor cell membrane by biocompatible anchor for membrane. This immunotherapeutic approach results in a dramatic therapeutic response in large established murine subcutaneous tumors including melanoma, sarcoma, pancreatic adenocarcinoma, and pheochromocytoma. Additionally, eradication of metastases and/or long-lasting resistance to subsequent re-challenge with tumor cells was also accomplished. Current and future advantages of this immunotherapeutic approach and its possible combinations with other available therapies are discussed in this review.


Asunto(s)
Inmunoterapia , Neoplasias/terapia , Inmunidad Adaptativa , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Terapia Combinada , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata , Inmunomodulación , Inmunoterapia/métodos , Ligandos , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Receptores Toll-Like/metabolismo , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
19.
Front Physiol ; 10: 812, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31297067

RESUMEN

The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or "anti-tick" vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.

20.
Cell Mol Life Sci ; 76(10): 2003-2013, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30747251

RESUMEN

To successfully feed, ticks inject pharmacoactive molecules into the vertebrate host including cystatin cysteine protease inhibitors. However, the molecular and cellular events modulated by tick saliva remain largely unknown. Here, we describe and characterize a novel immunomodulatory cystatin, Iristatin, which is upregulated in the salivary glands of feeding Ixodes ricinus ticks. We present the crystal structure of Iristatin at 1.76 Å resolution. Purified recombinant Iristatin inhibited the proteolytic activity of cathepsins L and C and diminished IL-2, IL-4, IL-9, and IFN-γ production by different T-cell populations, IL-6 and IL-9 production by mast cells, and nitric oxide production by macrophages. Furthermore, Iristatin inhibited OVA antigen-induced CD4+ T-cell proliferation and leukocyte recruitment in vivo and in vitro. Our results indicate that Iristatin affects wide range of anti-tick immune responses in the vertebrate host and may be exploitable as an immunotherapeutic.


Asunto(s)
Proteínas de Artrópodos/farmacología , Cistatinas/farmacología , Inmunosupresores/farmacología , Cistatinas Salivales/farmacología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Cristalografía por Rayos X , Cistatinas/clasificación , Cistatinas/genética , Citocinas/metabolismo , Compuestos Epoxi/metabolismo , Femenino , Inmunosupresores/química , Inmunosupresores/metabolismo , Ixodes/química , Ixodes/genética , Ixodes/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Filogenia , Proteolisis/efectos de los fármacos , Cistatinas Salivales/química , Cistatinas Salivales/genética , Homología de Secuencia de Aminoácido , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...