Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Integr Comp Biol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599630

RESUMEN

Limitations on energetic resources create evolutionary trade-offs, prompting us to investigate if investment in claw strength remains consistent across crustaceans living in diverse habitats. Decapod crustaceans living in deep-sea hydrothermal vents are ideal for this study due to their extreme environment. In this study, we investigated whether decapods (blind crab Austinograea sp. and the squat lobster Munidopsis lauensis) living in deep-sea hydrothermal vents prioritize investing in strong claws compared to the carapace, like coastal decapods. We analyzed exoskeleton morphology, mechanical properties, structures, and elemental composition in both the carapace and claws of four Decapoda species (two each from Brachyura and Anomura infraorders) in vent and coastal habitats. Coastal decapods had approximately 4 to 9 times more teeth on their claw cutting edge than the vent species. Further, only the coastal species exhibited higher firmness in their claws than in their carapaces. Each infraorder controlled exoskeletal hardness differently: Brachyura changed the stacking height of the Bouligand structure, while Anomura regulated magnesium content in the exoskeleton. The vent decapods may prioritize strengthening their carapace over developing robust claws, allocating resources to adapt to the harsh conditions of deep-sea hydrothermal vents. This choice might enhance their survival in the extreme environment, where carapace strength is crucial for protecting internal organs from environmental factors, rather than relying on the powerful claws seen in coastal decapods for a competitive advantage.

2.
Environ Sci Technol ; 58(17): 7636-7642, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629715

RESUMEN

Plastic contamination is a global pervasive issue, extending from coastal areas and open oceans to polar regions and even the deep sea. Microplastic (MP) contamination in hydrothermal vents, which are known for their high biodiversity even under extreme conditions, has remained largely unexplored. Here, we present, for the first time, MP pollution in a deep-sea hydrothermal vent at one of the biodiversity hotspots─the Central Indian Ridge. Not only the environment (seawater: 2.08 ± 1.04 MPs/L, surface sediments: 0.57 ± 0.19 MP/g) but also all six major benthic species investigated were polluted by MPs. MPs mainly consisted of polypropylene, polyethylene terephthalate, and polystyrene fragments ≤100 µm and were characterized as being either transparent or white in color. Remarkably, bioaccumulation and even biomagnification of microplastics were observed in the top predators of the ecosystem, such as squat lobsters (14.25 ± 4.65 MPs/individual) and vent crabs (14.00 ± 2.16 MPs/individual), since they contained more MPs than animals at lower trophic levels (e.g., mussels and snails, 1.75-6.00 average MPs/individuals). These findings reveal MP contamination of an ecosystem in a hydrothermal vent, thereby suggesting that their accumulation and magnification can occur in top-level animals, even within remote and extreme environments.


Asunto(s)
Ecosistema , Respiraderos Hidrotermales , Microplásticos , Animales , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Biodiversidad
3.
Mar Pollut Bull ; 200: 116052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290361

RESUMEN

Continuous emissions of anthropogenic CO2 are changing the atmospheric and oceanic environment. Although some species may have compensatory mechanisms to acclimatize or adapt to the changing environment, most marine organisms are negatively influenced by climate change. In this study, we aimed to understand the compensatory mechanisms of the Antarctic clam, Laternula elliptica, to climate-related stressors by using archived shells from 1995 to 2018. Principal component analysis revealed that seawater pCO2 and salinity in the Antarctic Ocean, which have increased since the 2000's, are the most influential factors on the characteristics of the shell. The periostracum thickness ratio and nitrogen on the outermost surface have increased, and the dissolution area (%) has decreased. Furthermore, the calcium content and mechanical properties of the shells have not changed. The results suggest that L. elliptica retains the mechanism of protecting the shell from high pCO2 by thickening the periostracum as a phenotype plasticity.


Asunto(s)
Bivalvos , Agua de Mar , Animales , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Océanos y Mares , Regiones Antárticas , Exoesqueleto , Dióxido de Carbono
4.
Mar Pollut Bull ; 185(Pt A): 114240, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272320

RESUMEN

Ghost fishing via a derelict fishing gear (DFG) is a critical threat to marine organisms. To explore the effect of DFG on sea turtle strandings, the DFG distribution was compared at two sites on Jeju Island (South Korea) with a contrasting number of strandings. Coastal areas in northern Jeju Island were surveyed during dives with scuba equipment, and the DFG from two sites, Gwideok-ri and Sinchang-ri was collected and compared in terms of quantity and size of the items. Fishing line was more common, longer, and thicker in Gwideok-ri than in Sinchang-ri, while other types of DFG did not differ between the two sites. In addition, necropsies on two loggerhead sea turtles discovered on Jeju Island found fishing lines with fishing hooks in the oral cavity of both carcasses. This suggests that derelict recreational fishing lines may pose a significant threat to sea turtles in coastal areas.


Asunto(s)
Tortugas , Animales , Explotaciones Pesqueras , Caza , Organismos Acuáticos , República de Corea
5.
Sci Rep ; 12(1): 11816, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821397

RESUMEN

Animals living in extreme environments, such as hydrothermal vents, would be expected to have evolved protective shells or exoskeletons to maintain homeostasis. The outer part of the exoskeleton of vent crabs (Austinograea sp.) in the Indian Ocean hydrothermal vent was one of the hardest (approximately 7 GPa) biological materials ever reported. To explore the exoskeletal characteristics of vent crabs which enable them to adapt to severe environments, a comparative analysis was conducted with the Asian paddle crab (Charybdis japonica) living in coastal areas. Nanoindentation, thermogravimetric analysis, scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy were used to analyze the mechanical properties, thermal stability, structure, surface components, and the composition of compounds, respectively. Though both species have four-layered exoskeletons, the outermost layer of the vent crab, a nano-granular structure, was much thicker than that of the coastal crab. The proportions of aluminum and sulfur that constitute the epicuticle of the exoskeleton were higher in the vent crab than in the coastal crab. There was a lack of water or volatile substances, lots of CaCO3, and no carotenoid-based compounds in the exoskeleton of the vent crab. These might have improved the mechanical properties and thermal stability of the hydrothermal species.


Asunto(s)
Braquiuros , Respiraderos Hidrotermales , Adaptación Fisiológica , Animales , Océano Índico , Alimentos Marinos
6.
Integr Comp Biol ; 60(1): 24-32, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693115

RESUMEN

The Indian Ocean hydrothermal vent is a region where a new oceanic crust is formed by magma at the interface of the deep-sea bed over 2000 m in depth. Here we examined for the first time the exoskeleton structure and mechanical properties of the bythograeid crab Austinograea Rodriguezensis living in hydrothermal vents. Scanning electron microscope and energy dispersive x-ray were used for structural analysis, and a nanoindentation system was used for mechanical analysis. The exoskeleton was divided into four layers: epicuticle, exocuticle, endocuticle, and membrane. The thickness of each layer was different from that of other crustaceans previously reported. Additionally, the number of constituent elements, composition ratio, and hardness of each layer were unique among previously studied crabs. This observation indicates that those characteristics might have evolved for creatures with a hard exoskeleton living in the deep-sea hydrothermal vent.


Asunto(s)
Exoesqueleto/anatomía & histología , Braquiuros/anatomía & histología , Adaptación Biológica , Exoesqueleto/ultraestructura , Animales , Braquiuros/ultraestructura , Femenino , Respiraderos Hidrotermales , Océano Índico , Masculino , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...