Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 31(1): 343-8, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22093768

RESUMEN

This paper reports a label-free biosensor for the detection of DNA hybridization. The proposed biosensor measures the surface potential on oligonucleotide modified electrodes using a direct charge accumulation method. The sensor directly and repeatedly measures the charges induced in the working electrode, which correspond to intrinsic negative charges in immobilized molecules. The sensor achieves an improved signal-to-noise ratio (SNR), through the oversampling effect of accumulation for charges and the differential architecture. The sensor also shows stable, robust, and reproducible measurement independent of slight changes in the reference voltage, unlike previous ion-sensitive field effect transistors (ISFETs), providing the benefits of choosing a wide variety of reference electrode materials. The proposed device is integrated with working electrodes, a reference electrode and readout circuits into one package via a 0.35 µm complementary metal-oxide-semiconductor (CMOS) process. The sensor achieves a detectable range of 88.3 dB and a detection limit of 36 µV for surface potential. It is demonstrated that the sensor successfully achieves specific detection of oligonucleotide sequences derived from the H5N1 avian influenza virus. The experiments show a limit of detection of 100 pM and include a single-base mismatch test in 18-mer oligonucleotides.


Asunto(s)
Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , ADN Viral/análisis , ADN Viral/genética , Semiconductores , Análisis de Secuencia de ADN/instrumentación , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Subtipo H1N1 del Virus de la Influenza A/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado , Electricidad Estática
2.
Biosens Bioelectron ; 26(11): 4591-5, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21592770

RESUMEN

This paper describes a sensor for label-free, fully electrical detection of DNA hybridization based on capacitive changes in the electrode-electrolyte interface. The sensor measures capacitive changes in real time according to a charging-discharging principle that is limited by the hysteresis window. In addition, a novel autonomous searching technique, which exclusively monitors desorption-free hybridized electrodes among electrode arrays, enhances the performance of the sensor compared with conventional capacitive measurement. The sensor system achieves a detection range of 80 dB. The integrated circuit sensor is fabricated with a 0.35 µm CMOS process. The proposed sensor offers rapid, robust and inexpensive measurement of capacitance with highly integrated detection circuitry. It also facilitates quantitative evaluations of molecular densities on a chip with distinctive impedance variations by monitoring desorption-free hybridized electrodes. Our electrical biosensor has great potential for use with bio analytical tools and point-of-care diagnosis.


Asunto(s)
Técnicas Biosensibles/métodos , ADN Viral/análisis , ADN Viral/genética , Secuencia de Bases , Técnicas Biosensibles/instrumentación , Sondas de ADN , Espectroscopía Dieléctrica , Capacidad Eléctrica , Impedancia Eléctrica , Técnicas Electroquímicas , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/genética , Hibridación de Ácido Nucleico
3.
Artículo en Inglés | MEDLINE | ID: mdl-21096503

RESUMEN

This paper presents fully integrated label-free DNA recognition circuit based on capacitance measurement. A CMOS-based DNA sensor is implemented for the electrical detection of DNA hybridization. The proposed architecture detects the difference of capacitance through the integration of current mismatch of capacitance between reference electrodes functionalized with only single-stranded DNA and sensing electrodes bound with complementary DNA strands specifically. In addition, to minimize the effects of parallel resistance between electrodes and DNA layers, the compensation technique of leakage current through the use of constant current charging and discharging is implemented in the proposed detection circuit. The chip was fabricated in 0.35um 4-metal 2-poly CMOS process, and 16 × 8 sensing electrode arrays were fabricated by post-processing steps.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , Electrónica/métodos , Técnicas Biosensibles/instrumentación , Electrónica/instrumentación
4.
Biosens Bioelectron ; 26(4): 1373-9, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20692155

RESUMEN

This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-µm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 µM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , ADN/genética , Hibridación de Ácido Nucleico , Secuencia de Bases , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/estadística & datos numéricos , ADN Complementario/genética , Espectroscopía Dieléctrica , Electrodos , Diseño de Equipo , Oro , Ácidos Nucleicos de Péptidos/química , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA