Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(7)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37510220

RESUMEN

The phenolic compounds in eggplant offer potential natural antioxidants for improved health. A large number of samples were examined in order to find eggplant germplasm with a high potential for health promotion. A genome-wide association study (GWAS) was conducted to identify single nucleotide polymorphisms (SNPs) associated with variations in total phenolic content (TPC) and antioxidant activity in eggplants, including ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) scavenging activity and ferric reducing antioxidant power (FRAP). TPC values varied from 14.19 to 842.90 mg gallic acid equivalent (GAE)/100 g of dry weight of eggplant fruit powder. TPC showed a strong positive correlation with both FRAP and ABTS (r = 0.89 *** and 0.77 ***, respectively). The GWAS identified 20 SNPs that were significantly associated out of 29,183 SNPs. Out of the 20 significant SNPs, 11 showed associations with TPC, 4 with ABTS activity, and 5 with FRAP. Among the SNPs associated with TPC, one SNP was found on each of Chromosomes 3, 4, 7, and 12. In contrast, Chromosome 5 comprised two SNPs associated to TPC. Furthermore, the gene encoding IRX12 laccase-4 on Chromosome 10 was found to contain five SNPs associated with TPC. Four significantly linked SNPs on Chromosomes 1 (1 SNP), 4 (2 SNPs), and 10 (1 SNP) were found to be related to ABTS activity. The identified SNPs will be further examined as markers for selecting desirable eggplant varieties and exploring the links between candidate genes, phenolic content, and antioxidant activity. The findings of this study could assist in further study and the development of eggplants with improved health advantages through targeted breeding.


Asunto(s)
Antioxidantes , Solanum melongena , Estudio de Asociación del Genoma Completo , Solanum melongena/genética , Fitomejoramiento , Fenoles
2.
Plants (Basel) ; 11(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36235493

RESUMEN

Eggplant is one of the most economically and nutritionally important vegetables worldwide. The study of the association of phenotypic traits with genetic factors is vital for the rapid and efficient identification and selection of eggplant genetic resources for breeding purposes with desired traits. The eggplant resources (587) collected from different countries, including Korea, were used for establishing the core collection. A total of 288 accessions were selected from 587 Solanum accessions based on 52 single nucleotide polymorphisms (SNPs) markers together with 17 morphological traits. This core collection was further used to analyze the genetic associations of eggplant morphological variations. A large variation was found among the evaluated eggplant accessions for some agro-morphological traits. Stem prickles and leaf prickles showed a significant positive correlation (r = 0.83***), followed by days to flowering and days to maturity (r = 0.64***). A total of 114,981 SNPs were filtered and used for phylogenetic tree analysis, population structure analysis, and genome-wide association study (GWAS). Among the agro-morphological traits, significantly associated SNPs were found for six traits. A total of 377 significantly associated SNPs with six agro-morphological traits were identified. These six traits and the number of SNPs were: days to maturity (51), flower size (121), fruit width (20), harvest fruit color (42), leaf prickles (38), and stem prickles (105). The largest fraction of significant SNPs (11.94%) was obtained on chromosome Ch01, followed by Ch07 and Ch06 with 11.67% and 10.08%, respectively. This study will help to develop markers linked to the most important agro-morphological traits of eggplant genetic resources and support the selection of desirable traits for eggplant breeding programs.

3.
Front Plant Sci ; 13: 984825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275512

RESUMEN

Rapid changes in agricultural environments caused by global warming pose a major challenge to food production and safety. Common wheat (Triticum aestivum) is a hexaploid plant (AABBDD) that shares large numbers of quantitative traits and resistance genes with B and D genomes of Aegilops species, which are responsible for several metabolic functions and biosynthetic processes, particularly in plant adaptation to biotic as well as abiotic stresses. Comparatively, the abundance of the Aegilops gene pool is much higher than that of Triticum. Therefore, we used four universal DNA barcodes for plants (ITS2, matK, rbcL, and psbM-petN) to construct a phylogenetic tree to classify the genus Aegilops. Fourteen species were distinguished among a total of 17 representative species. Aegilops biuncialis, Aegilops juvenalis, and Aegilops umbellulata could not be grouped into any of the clusters in the phylogenetic tree, indicating that these three species could not be distinguished by four DNA barcodes. Therefore, from 2408 SNPs obtained using genotyping by sequencing (GBS), we manually screened 30 SNPs that could be potentially used to classify these three species. The results of gene flow and genetic differentiation index (Fst) showed that the genetic differentiation among the three species was small, and there was bidirectional horizontal gene transfer between the three species, which was consistent with our results that the three species were difficult to classify by DNA barcode.

4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201603

RESUMEN

Melon (Cucumis melo L.) is an economically important horticultural crop with abundant morphological and genetic variability. Complex genetic variations exist even among melon varieties and remain unclear to date. Therefore, unraveling the genetic variability among the three different melon varieties, muskmelon (C. melo subsp. melo), makuwa (C. melo L. var. makuwa), and cantaloupes (C. melo subsp. melo var. cantalupensis), could provide a basis for evolutionary research. In this study, we attempted a systematic approach with genotyping-by-sequencing (GBS)-derived single nucleotide polymorphisms (SNPs) to reveal the genetic structure and diversity, haplotype differences, and marker-based varieties differentiation. A total of 6406 GBS-derived SNPs were selected for the diversity analysis, in which the muskmelon varieties showed higher heterozygote SNPs. Linkage disequilibrium (LD) decay varied significantly among the three melon varieties, in which more rapid LD decay was observed in muskmelon (r2 = 0.25) varieties. The Bayesian phylogenetic tree provided the intraspecific relationships among the three melon varieties that formed, as expected, individual clusters exhibiting the greatest genetic distance based on the posterior probability. The haplotype analysis also supported the phylogeny result by generating three major networks for 48 haplotypes. Further investigation for varieties discrimination allowed us to detect a total of 52 SNP markers that discriminated muskmelon from makuwa varieties, of which two SNPs were converted into cleaved amplified polymorphic sequence markers for practical use. In addition to these markers, the genome-wide association study identified two SNPs located in the genes on chromosome 6, which were significantly associated with the phenotypic traits of melon seed. This study demonstrated that a systematic approach using GBS-derived SNPs could serve to efficiently classify and manage the melon varieties in the genebank.


Asunto(s)
Cucumis melo/genética , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Variación Genética , Genética de Población , Genoma de Planta , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Desequilibrio de Ligamiento , Fenotipo , Filogenia , Semillas/genética
5.
Plants (Basel) ; 10(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921437

RESUMEN

Potato (Solanum tuberosum L.) is an important staple food and economic crop in many countries. It is of critical importance to understand the genetic diversity and population structure for effective collection, conservation, and utilization of potato germplasm. Thus, the objective of the present study was to investigate the genetic diversity and population structure of potato germplasm conserved in the National Agrobiodiversity Center (NAC) of South Korea to provide basic data for future preservation and breeding of potato genetic resources. A total of 24 simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 482 potato accessions. A total of 257 alleles were detected, with an average of 10.71 alleles per locus. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual accessions within the population, while only 3% was distributed among populations. Results of genetic structure analysis based on STRUCTURE and discriminant analysis of principal components revealed that 482 potato accessions could be divided into two main subpopulations. Accessions of subpopulation 1 mainly belonged to cultivars and breeding lines. Accessions of subpopulations 2 basically corresponded to wild relatives of potatoes. Results of this study provide useful information for potato improvement and conservation programs, although further studies are needed for a more accurate evaluation of genetic diversity and phenotypic traits of potatoes.

6.
Front Plant Sci ; 12: 608559, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633762

RESUMEN

Recently, within the Fabaceae family, the Vicia genus has been recognized for its vital role in sustainable agriculture. Vicia species are economically important grain and forage crops. However, the presence of complex morphological characteristics makes identification and recognition of native species difficult. In this study, the possibility of using DNA barcoding regions (ITS2, matK, and rbcL) to distinguish among 19 Vicia taxa (59 accessions) found in South Korea was evaluated. The sequence alignment analysis revealed considerable nucleotide diversity (π) between the loci, in which ITS2 showed the highest mean interspecific distance, whereas there was no intraspecific variability among the barcode regions in 12 of the 19 taxa. Phylogenetic analysis of combined barcoding regions revealed well-resolved phylogeny with the highest species level discrimination. Combinations of barcode loci were also used in classification at the subgenera and section levels. The results revealed that the combined barcoding regions can be used effectively to differentiate the following species: Vicia angustifolia var. segetilis, Vicia bungei, Vicia villosa, Vicia cracca, Vicia dasycarpa, Vicia hirsuta, Vicia tetrasperma, Vicia amurensis, Vicia hirticalycina, and Vicia chosenensis. However, it is difficult to differentiate the species of Vicia unijuga, Vicia unijuga var. kaussanensis, Vicia linearifolia, Vicia unijuga f. angustifolia, Vicia nipponica, Vicia amoena, Vicia venosa var. cuspidata, Vicia pseudo-orobus, and Vicia japonica with the tested barcode regions. These species come under sect. Vicilla and are found to be closely related or species that have recently undergone speciation; thus, it has limitation to distinguish with recommended barcodes. Hence, to differentiate the unclassified species, 39 morphological characteristics were investigated, in which 16 useful characteristics were selected for efficient classification. Finally, the 16 selected morphological useful traits efficiently differentiated all the Vicia species. In conclusion, a combination of barcoding loci together with morphological characteristics of this study efficiently discriminated all the Korean Vicia species.

7.
Microsc Res Tech ; 84(2): 337-357, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32959444

RESUMEN

Seed macro- and micro-morphology were analyzed to evaluate their capacity to discriminate species in the genus Vicia (Fabaceae). To assess the interspecific variation of the taxa in the genus Vicia, 41 accessions were obtained from the USDA-ARS germplasm collection in the USA and 19 accessions were collected from Korea. Seed morphological characteristics such as shape, color, mottling, finish, length, width, diameter, hilum shape, hilum color, hilum length, and lens distance from the hilum were examined under a stereomicroscope. Testa texture characteristics such as testa pattern, papillae type, density, height, ribbing, surface deposits, and peaks topped with wax were examined under scanning electron microscopy. Various gross-morphological traits of seeds of Vicia species have been analyzed and compared. The present study revealed significant variation in testa traits. Testa were papillose and papillose with mounds, the latter being observed only in Vicia lathyroides. The present study revealed 20 key traits that could be used to diagnose Vicia species and classify them.


Asunto(s)
Semillas/anatomía & histología , Semillas/clasificación , Vicia/anatomía & histología , Vicia/clasificación , Fenotipo , República de Corea , Semillas/citología , Estados Unidos
8.
Genes Genomics ; 42(12): 1419-1430, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113112

RESUMEN

BACKGROUND: Information on the genetic variation of genetic resource collections is very important for both the conservation and utilization of crop germplasms in genebanks. Var. frutescens of Perilla crop is extensively cultivated in South Korea as both an oil crop and a vegetable crop. OBJECTIVES: We used SSR markers to evaluate the genetic diversity, genetic relationships, and population structure of 155 accessions of var. frutescens that have been selected as genetic resources for the development of leaf vegetable cultivars and preserved in the RDA-Genebank collection from South Korea. METHODS: A total of 155 accessions of var. frutescens of Perilla crop collected in South Korea were obtained from the RDA-Genebank of the Republic of Korea. We selected 20 SSR markers representing the polymorphism of and adequately amplifying all the Perilla accessions. RESULTS: The average GD and PIC values were 0.642 and 0.592, respectively, with ranges of 0.244-0.935 and 0.232- 0.931. The genetic variability in the southern region of South Korea was higher than that in the central region. The clustering patterns were not clearly distinguished between the accessions of var. frutescens from the central and southern regions of South Korea. CONCLUSION: These results regarding the genetic diversity and population structure of the 155 accessions of var. frutescens of South Korea provide useful information for understanding the genetic variability of this crop and selecting and managing core germplasm sets in the RDA-Genebank of the Republic of Korea.


Asunto(s)
Perilla frutescens/genética , Polimorfismo Genético , Variación Genética , Genética de Población , Filogeografía
9.
Front Plant Sci ; 11: 688, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625218

RESUMEN

Wheat (Triticum spp.) has been an important staple food crop for mankind since the beginning of agriculture. The genus Triticum L. is composed of diploid, tetraploid, and hexaploid species, majority of which have not yet been discriminated clearly, and hence their phylogeny and classification remain unresolved. Genotyping-by-sequencing (GBS) is an easy and affordable method that allows us to generate genome-wide single nucleotide polymorphism (SNP) markers. In this study, we used GBS to obtain SNPs covering all seven chromosomes from 283 accessions of Triticum-related genera. After filtering low-quality and redundant SNPs based on haplotype information, the GBS assay provided 14,188 high-quality SNPs that were distributed across the A (71%), B (26%), and D (2.4%) genomes. Cluster analysis and discriminant analysis of principal components (DAPC) allowed us to distinguish six distinct groups that matched well with Triticum species complexity. We constructed a Bayesian phylogenetic tree using 14,188 SNPs, in which 17 Triticum species and subspecies were discriminated. Dendrogram analysis revealed that the polyploid wheat species could be divided into groups according to the presence of A, B, D, and G genomes with strong nodal support and provided new insight into the evolution of spelt wheat. A total of 2,692 species-specific SNPs were identified to discriminate the common (T. aestivum) and durum (T. turgidum) wheat cultivar and landraces. In principal component analysis grouping, the two wheat species formed individual clusters and the SNPs were able to distinguish up to nine groups of 10 subspecies. This study demonstrated that GBS-derived SNPs could be used efficiently in genebank management to classify Triticum species and subspecies that are very difficult to distinguish by their morphological characters.

10.
Antioxidants (Basel) ; 9(3)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150893

RESUMEN

Black soybean (Glycine max L.) has been used as a traditional medicine because its seed coat contains various natural phenolic compounds such as anthocyanins. The objective of this study was to reveal the genetic variation in the agricultural traits, phytochemicals, and antioxidant activity of 172 Korean black soybean landraces (KBSLs) and establish a relationship among them. The evaluation of three agricultural traits (days to 50% flowering, maturity, and 100-seed weight), six phytochemicals (delphinidin-3-glucoside, cyaniding-3-glucoside, petunidin-3-glucoside, daidzin, glycitin, and genestin), and four antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS), ferric-reducing antioxidant power (FRAP), and the total polyphenol content (TPC) of 172 KBSLs were analyzed in 2012 and 2015. The agricultural traits, phytochemicals, and antioxidant activities of the 172 KBSLs showed wide variation among the accessions and years. In correlation analysis, the agricultural traits and phytochemicals showed positive and negative correlations with phytochemicals and antioxidant activity, respectively. The principal component analyses result indicated that phytochemicals accounted for most of the variability in the KBSLs. In clustering analysis, the 172 KBSLs were classified into four clusters. These results could lead to expanding the knowledge of the agricultural traits, phytochemicals, and antioxidant activity of the KBSLs, which are valuable materials for the development of new soybean varieties.

11.
Genes (Basel) ; 10(10)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635343

RESUMEN

Watermelon is an economically important vegetable fruit worldwide. The objective of this study was to conduct a genetic diversity of 68 watermelon accessions using single nucleotide polymorphisms (SNPs). Genotyping by sequencing (GBS) was used to discover SNPs and assess genetic diversity and population structure using STRUCTURE and discriminant analysis of principal components (DAPC) in watermelon accessions. Two groups of watermelons were used: 1) highly utilized 41 watermelon accessions at the National Agrobiodiversity Center (NAC) at the Rural Development Administration in South Korea; and 2) 27 Korean commercial watermelons. Results revealed the presence of four clusters within the populations differentiated principally based on seed companies. In addition, there was higher genetic differentiation among commercial watermelons of each company. It is hypothesized that the results obtained from this study would contribute towards the expansion of this crop as well as providing data about genetic diversity, which would be useful for the preservation of genetic resources or for future breeding programs.


Asunto(s)
Citrullus/genética , Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple , Banco de Semillas , Genotipo , Análisis de Secuencia de ADN/métodos
12.
Mitochondrial DNA B Resour ; 3(1): 311-312, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33474156

RESUMEN

Wild oat, Avena sterilis L. is a stout broad-leaved annual grass resembling cultivated oats in general appearance. In this study, we sequenced the complete chloroplast (cp) genome sequence of A. sterilis for the first time to investigate their phylogenetic relationship in the family Poaceae. The complete cp genome sequence is 135,887 bp in length with 38.5% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (21,603 bp) separated by a small single-copy region (12,575 bp) and a large single-copy region (80,106). The cp genome encodes 111 unique genes, 76 of which are protein-coding genes, four rRNA genes, 30 tRNA genes, and 18 duplicated genes in the inverted repeat region. The phylogenetic analysis indicated A. sterilis closely clustered with the cultivated oat, A. sativa L.

13.
Mitochondrial DNA B Resour ; 3(2): 719-720, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-33474296

RESUMEN

Little millet, Panicum sumatrense Roth ex Roem. & Schult., is an important cultivated species under the tribe Paniceae, sub-family Panicoideae and family Poaceae. In this study, for the first time we sequenced the complete chloroplast (cp) genome of P. sumatrense to investigate their phylogenetic relationship in the family Poaceae. The complete cp genome sequence of P. sumatrense is 139,384 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (22,723 bp) separated by a small single-copy region (12,583 bp) and a large single-copy region (81,355 bp). The P. sumatrense cp genome encodes 125 unique genes, which include 91 protein-coding genes, 4 rRNA genes, 30 tRNA genes, and 20 genes were duplicated in the inverted repeat region. This newly determined cp genome (P. sumatrense) could be valuable information for the breeding programs of this cereal crops in the family Poaceae.

14.
Appl Plant Sci ; 4(5)2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27213127

RESUMEN

PREMISE OF THE STUDY: We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. METHODS AND RESULTS: Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. CONCLUSIONS: The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species.

15.
Genes (Basel) ; 6(4): 1164-82, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26540077

RESUMEN

The vetch (Vicia sativa) is one of the most important annual forage legumes globally due to its multiple uses and high nutritional content. Despite these agronomical benefits, many drawbacks, including cyano-alanine toxin, has reduced the agronomic value of vetch varieties. Here, we used 454 technology to sequence the two V. sativa subspecies (ssp. sativa and ssp. nigra) to enrich functional information and genetic marker resources for the vetch research community. A total of 86,532 and 47,103 reads produced 35,202 and 18,808 unigenes with average lengths of 735 and 601 bp for V. sativa sativa and V. sativa nigra, respectively. Gene Ontology annotations and the cluster of orthologous gene classes were used to annotate the function of the Vicia transcriptomes. The Vicia transcriptome sequences were then mined for simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. About 13% and 3% of the Vicia unigenes contained the putative SSR and SNP sequences, respectively. Among those SSRs, 100 were chosen for the validation and the polymorphism test using the Vicia germplasm set. Thus, our approach takes advantage of the utility of transcriptomic data to expedite a vetch breeding program.

16.
Molecules ; 20(1): 1543-50, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25608853

RESUMEN

The temperate and herbaceous genus Vicia L. is a member of the legume tribe Fabeae of the subfamily Papilionoideae. The genus Vicia comprises 166 annual or perennial species distributed mainly in Europe, Asia, and North America, but also extending to the temperate regions of South America and tropical Africa. The use of simple sequence repeat (SSR) markers for Vicia species has not been investigated as extensively as for other crop species. In this study, we assessed the potential for cross-species amplification of cDNA microsatellite markers developed from common vetch (Vicia sativa subsp. sativa). For cross-species amplification of the SSRs, amplification was carried out with genomic DNA isolated from two to eight accessions of 22 different Vicia species. For individual species or subspecies, the transferability rates ranged from 33% for V. ervilia to 82% for V. sativa subsp. nigra with an average rate of 52.0%. Because the rate of successful SSR marker amplification generally correlates with genetic distance, these SSR markers are potentially useful for analyzing genetic relationships between or within Vicia species.


Asunto(s)
Repeticiones de Microsatélite/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Vicia sativa/genética , Vicia/genética , Marcadores Genéticos , Filogenia , Especificidad de la Especie
17.
Molecules ; 18(7): 8376-92, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23863776

RESUMEN

Vetch (Vicia sativa L.) is one of the most important annual forage legumes in the World due to its multiple uses (i.e., hay, grain, silage and green manure) and high nutritional value. However, detrimental cyanoalanine toxins in its plant parts including seeds and its vulnerability to hard winter conditions are currently reducing the agronomic values of vetch varieties. Moreover, the existence in the public domain of very few genomic resources, especially molecular markers, has further hampered breeding efforts. Polymorphic simple sequence repeat markers from transcript sequences (cDNA; simple sequence repeat [SSR]) were developed for Vicia sativa subsp. sativa. We found 3,811 SSR loci from 31,504 individual sequence reads, and 300 primer pairs were designed and synthesized. In total, 65 primer pairs were found to be consistently scorable when 32 accessions were tested. The numbers of alleles ranged from 2 to 19, frequency of major alleles per locus were 0.27-0.87, the genotype number was 2-19, the overall polymorphism information content (PIC) values were 0.20-0.86, and the observed and expected heterozygosity values were 0.00-0.41 and 0.264-0.852, respectively. These markers provide a useful tool for assessing genetic diversity, population structure, and positional cloning, facilitating vetch breeding programs.


Asunto(s)
ADN Complementario/genética , Repeticiones de Microsatélite/genética , Vicia sativa/genética , Alelos , Secuencia de Bases , ADN Complementario/análisis , Marcadores Genéticos/genética , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo Genético/genética , Análisis de Secuencia de ADN
18.
Molecules ; 18(2): 1844-56, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23434866

RESUMEN

Faba bean (Vicia faba L.) is a major food source and fodder legume, popularly known for its high content of seed-protein. Its role is critical in crop rotation, and for fixing nitrogen effectively. Polymorphic simple sequence repeat markers from transcript sequences (cDNA; simple sequence repeat [SSR]) were developed for faba bean (Vicia faba). We found that 1,729 SSR loci from 81,333 individual sequence reads and 240 primer pairs were designed and synthesized. In total, 55 primer pairs were found to be polymorphic and scorable consistently when screened in 32 accessions. The number of alleles ranged from 2 to 15, frequency of major alleles per locus varied from 0.17 to 0.91, the genotypes number ranged from 2 to 17, observed and expected heterozycosity values ranged from 0.00 to 0.44 and 0.17 to 0.89 and overall PIC values ranged from 0.16 to 0.88 respectively. These markers will be a useful tool for assessing the genetic diversity, understanding the population structure, and breeding patterns of faba bean.


Asunto(s)
ADN Complementario/genética , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Temperatura , Vicia faba/genética , Marcadores Genéticos , Datos de Secuencia Molecular
19.
Cryo Letters ; 31(6): 473-84, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21410016

RESUMEN

An efficient protocol for the cryopreservation of madder (Rubia akane Nakai) hairy root cultures was developed using droplet-vitrification and alternative loading and vitrification solutions formulated previously in our laboratory. Among eight preculture treatments tested, the highest post-cryopreservation regeneration was obtained for explants incubated in liquid half-strength MS medium with progressively increased sucrose concentration (0.3 M for 54 h, then 0.5 M for 16 h). Loading of precultured explants improved their post-cryopreservation regeneration by 50-75% compared with non-loaded control. Combining loading solution C4 (35% PVS3) and vitrification solution B5 (80% PVS3) was the most effective, while applying six PVS2-based solutions at room temperature resulted in low post-cryo regeneration. Treatment duration was optimized to 30 min for loading and to 10-20 min for vitrification solution. Apices of primary and secondary hairy roots showed similar post-cryo regeneration (88 and 95%, respectively), which was significantly higher than regeneration of root sections without apices (65%). Droplet-vitrification produced higher post-cryo regeneration than 'classical' vitrification in cryovials. Our results suggest that droplet-vitrification using alternative loading and vitrification solutions is an efficient method for cryopreservation of R. akane hairy root cultures.


Asunto(s)
Criopreservación , Crioprotectores , Rubia , Biotecnología , Criopreservación/métodos , Crioprotectores/química , Técnicas de Cultivo , Desecación , Raíces de Plantas , Sacarosa , Vitrificación
20.
Bioinformatics ; 23(16): 2155-62, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17586551

RESUMEN

MOTIVATION: Core sets are necessary to ensure that access to useful alleles or characteristics retained in genebanks is guaranteed. We have successfully developed a computational tool named 'PowerCore' that aims to support the development of core sets by reducing the redundancy of useful alleles and thus enhancing their richness. RESULTS: The program, using a new approach completely different from any other previous methodologies, selects entries of core sets by the advanced M (maximization) strategy implemented through a modified heuristic algorithm. The developed core set has been validated to retain all characteristics for qualitative traits and all classes for quantitative ones. PowerCore effectively selected the accessions with higher diversity representing the entire coverage of variables and gave a 100% reproducible list of entries whenever repeated. AVAILABILITY: PowerCore software uses the .NET Framework Version 1.1 environment which is freely available for the MS Windows platform. The files can be downloaded from http://genebank.rda.go.kr/powercore/. The distribution of the package includes executable programs, sample data and a user manual.


Asunto(s)
Algoritmos , Frecuencia de los Genes/genética , Sitios de Carácter Cuantitativo/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuencia de Bases , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...