Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 376(6594): 731-738, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549417

RESUMEN

Continuous advancement in nonvolatile and morphotropic beyond-Moore electronic devices requires integration of ferroelectric and semiconductor materials. The emergence of hafnium oxide (HfO2)-based ferroelectrics that are compatible with atomic-layer deposition has opened interesting and promising avenues of research. However, the origins of ferroelectricity and pathways to controlling it in HfO2 are still mysterious. We demonstrate that local helium (He) implantation can activate ferroelectricity in these materials. The possible competing mechanisms, including He ion-induced molar volume changes, vacancy redistribution, vacancy generation, and activation of vacancy mobility, are analyzed. These findings both reveal the origins of ferroelectricity in this system and open pathways for nanoengineered binary ferroelectrics.

2.
Nanomaterials (Basel) ; 11(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923237

RESUMEN

Non-volatile memory (NVM) devices based on three-terminal thin-film transistors (TFTs) have gained extensive interest in memory applications due to their high retained characteristics, good scalability, and high charge storage capacity. Herein, we report a low-temperature (<100 °C) processed top-gate TFT-type NVM device using indium gallium zinc oxide (IGZO) semiconductor with monolayer gold nanoparticles (AuNPs) as a floating gate layer to obtain reliable memory operations. The proposed NVM device exhibits a high memory window (ΔVth) of 13.7 V when it sweeps from -20 V to +20 V back and forth. Additionally, the material characteristics of the monolayer AuNPs (floating gate layer) and IGZO film (semiconductor layer) are confirmed using transmission electronic microscopy (TEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS) techniques. The memory operations in terms of endurance and retention are obtained, revealing highly stable endurance properties of the device up to 100 P/E cycles by applying pulses (±20 V, duration of 100 ms) and reliable retention time up to 104 s. The proposed NVM device, owing to the properties of large memory window, stable endurance, and high retention time, enables an excellent approach in futuristic non-volatile memory technology.

3.
ACS Appl Mater Interfaces ; 12(40): 44926-44933, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32897052

RESUMEN

The process complexity, limited stability, and distinct synthesis and dispersion steps restrict the usage of multicomponent metal oxide nanodispersions in solution-processed electronics. Herein, sonochemistry is employed for the in situ synthesis and formulation of a colloidal nanodispersion of high-permittivity (κ) multicomponent lanthanum zirconium oxide (LZO: La2Zr2O7). The continuous propagation of intense ultrasound waves in the aqueous medium allows the generation of oxidant species which, on reaction, form nanofragments of crystalline LZO at ∼80 °C. Simultaneously, the presence of acidic byproducts in the vicinity promotes the formulation of a stable as-prepared LZO dispersion. The LZO thin film exhibits a κ of 16, and thin-film transistors (TFTs) based on LZO/indium gallium zinc oxide operate at low input voltages (≤4 V), with the maximum mobility (µ) and on/off ratio (Ion/Ioff) of 5.45 ± 0.06 cm2 V-1 s-1 and ∼105, respectively. TFTs based on the compound dielectric LZO/Al2O3 present a marginal reduction in leakage current, along with enhancement in µ (6.16 ± 0.04 cm2 V-1 s-1) and Ion/Ioff (∼105). Additionally, a 3 × 3 array of the proposed TFTs exhibits appreciable performance, with a µ of 3-6 cm2 V-1 s-1, a threshold voltage of -0.5 to 0.8 V, a subthreshold swing of 0.3-0.6 V dec-1, and an Ion/Ioff of 1-2.5 (×106).

4.
Toxicol Res ; 30(1): 55-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24795801

RESUMEN

OBJECTIVES: The use of indium compounds, especially those of small size, for the production of semiconductors, liquid-crystal panels, etc., has increased recently. However, the role of particle size or the chemical composition of indium compounds in their toxicity and distribution in the body has not been sufficiently investigated. Therefore, the aim of this study was to examine the effects of particle size and the chemical composition of indium compounds on their toxicity and distribution. METHODS: Male Sprague-Dawley rats were exposed to two different-sized indium oxides (average particle sizes under 4,000 nm [IO_4000] and 100 nm [IO_100]) and one nano-sized indium-tin oxide (ITO; average particle size less than 50 nm) by inhalation for 6 hr daily, 5 days per week, for 4 weeks at approximately 1 mg/m(3) of indium by mass concentration. RESULTS: We observed differences in lung weights and histopathological findings, differential cell counts, and cell damage indicators in the bronchoalveolar lavage fluid between the normal control group and IO- or ITO-exposed groups. However, only ITO affected respiratory functions in exposed rats. Overall, the toxicity of ITO was much higher than that of IOs; the toxicity of IO_4000 was higher than that of IO_100. A 4-week recovery period was not sufficient to alleviate the toxic effects of IO and ITO exposure. Inhaled indium was mainly deposited in the lungs. ITO in the lungs was removed more slowly than IOs; IO_4000 was removed faster than IO_100. IOs were not distributed to other organs (i.e., the brain, liver, and spleen), whereas ITO was. Concentrations of indium in the blood and organ tissues were higher at 4 weeks after exposure. CONCLUSIONS: The effect of particle size on the toxicity of indium compounds was not clear, whereas chemical composition clearly affected toxicity; ITO showed much higher toxicity than that of IO.

5.
Saf Health Work ; 3(3): 224-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23019535

RESUMEN

OBJECTIVES: This study was conducted in order to obtain information concerning the health hazards that may result from a 13 week inhalation exposure of n-pentane in Sprague-Dawley rats. METHODS: This study was conducted in accordance with the Organization for Economic Co-operation and Development (OECD) guidelines for the testing of chemicals No. 413 'Subchronic inhalation toxicity: 90-day study (as revised in 2009)'. The rats were divided into 4 groups (10 male and 10 female rats in each group), and were exposed to 0, 340, 1,530, and 6,885 ppm n-pentane in each exposure chamber for 6 hour/day, 5 days/week, for 13 weeks. All of the rats were sacrificed at the end of the treatment period. During the test period, clinical signs, mortality, body weights, food consumption, ophthalmoscopy, locomotion activity, urinalysis, hematology, serum biochemistry, gross findings, organ weights, and histopathology were assessed. RESULTS: During the period of testing, there were no treatment related effects on the clinical findings, body weight, food consumption, ophthalmoscopy, urinalysis, hematology, serum biochemistry, gross findings, relative organ weight, and histopathological findings. CONCLUSION: The no-observable-adverse-effect level (NOAEL) of n-pentane is evaluated as being more than 6,885 ppm (20.3 mg/L) in both male and female rats. n-pentane was not a classified specific target organ toxicity in the globally harmonized classification system (GHS).

6.
Saf Health Work ; 2(3): 282-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22953212

RESUMEN

OBJECTIVES: We sought to establish a novel method to generate nano-sized carbon black particles (nano-CBPs) with an average size smaller than 100 nm for examining the inhalation exposure risks of experimental rats. We also tested the effect of nano-CBPs on the pulmonary and circulatory systems. METHODS: We used chemical vapor deposition (CVD) without the addition of any additives to generate nano-CBPs with a particle size (electrical mobility diameter) of less than 100nm to examine the effects of inhalation exposure. Nano-CBPs were applied to a nose-only inhalation chamber system for studying the inhalation toxicity in rats. The effect on the lungs and circulatory system was determined according to the degree of inflammation as quantified by bronchoalveolar lavage fluid (BALF). The functional alteration of the hemostatic and vasomotor activities was measured by plasma coagulation, platelet activity, contraction and relaxation of blood vessels. RESULTS: Nano-CBPs were generated in the range of 83.3-87.9 nm. Rats were exposed for 4 hour/day, 5 days/week for 4 weeks to 4.2 × 10(6), 6.2 × 10(5), and 1.3 × 10(5) particles/cm(3). Exposure of nano-CBPs by inhalation resulted in minimal pulmonary inflammation and did not appear to damage the lung tissue. In addition, there was no significant effect on blood functions, such as plasma coagulation and platelet aggregation, or on vasomotor function. CONCLUSION: We successfully generated nano-CBPs in the range of 83.3-87.9 nm at a maximum concentration of 4.2 × 10(6) particles/cm(3) in a nose-only inhalation chamber system. This reliable method can be useful to investigate the biological and toxicological effects of inhalation exposure to nano-CBPs on experimental rats.

7.
Food Chem Toxicol ; 47(9): 2294-301, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19527766

RESUMEN

The subchronic toxicity of sec-butanethiol was investigated in Sprague-Dawley rats following a 13-week period of repeated inhalation exposure. Four groups of 10 rats of each sex were exposed to sec-butanethiol vapor by whole-body inhalation at 0, 25, 100, or 400 ppm for 6 h per day, 5 days a week over a 13-week period. At 400 ppm, both genders exhibited a decrease in food consumption, although a decrease in the body weight gain was only observed in females. Hematological investigations revealed a decrease in red blood cell, hemoglobin, and hematocrit in both the male and female groups, whilst the female group exhibited an increase in the mean corpuscular volume and a decrease in the mean corpuscular hemoglobin concentration. There was an increase in kidney weight for both genders but the liver weight was only higher in males than controls. Histopathological alterations were found in the kidneys, spleen, and nasal olfactory epithelium. There were no treatment-related effects observed in both genders at 100 ppm. Under the present experimental conditions, the target organs were determined to be the blood cells, the kidneys, the liver, and the nasal turbinates in rats. The no-observed-effect level was considered to be 100 ppm in rats.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Compuestos de Sulfhidrilo/toxicidad , Administración por Inhalación , Animales , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Índices de Eritrocitos/efectos de los fármacos , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Nivel sin Efectos Adversos Observados , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/patología , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...