Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 15(1): 73, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29017600

RESUMEN

BACKGROUND: Multimodal nanomaterials are useful for providing enhanced diagnostic information simultaneously for a variety of in vivo imaging methods. According to our research findings, these multimodal nanomaterials offer promising applications for cancer therapy. RESULTS: Melanin nanoparticles can be used as a platform imaging material and they can be simply produced by complexation with various imaging active ions. They are capable of specifically targeting epidermal growth factor receptor (EGFR)-expressing cancer cells by being anchored with a specific antibody. Ion-doped melanin nanoparticles were found to have high bioavailability with long-term stability in solution, without any cytotoxicity in both in vitro and in vivo systems. CONCLUSION: By combining different imaging modalities with melanin particles, we can use the complexes to obtain faster diagnoses by computed tomography deep-body imaging and greater detailed pathological diagnostic information by magnetic resonance imaging. The ion-doped melanin nanoparticles also have applications for radio-diagnostic treatment and radio imaging-guided surgery, warranting further proof of concept experimental.


Asunto(s)
Iones/química , Imagen por Resonancia Magnética/métodos , Melaninas/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Imagen Multimodal/métodos
2.
J Mater Chem B ; 5(19): 3580-3585, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32264295

RESUMEN

Most of the reported field effect transistors (FETs) fall short of a general method to uniquely specify and detect a target analyte. For this reason, we propose a pentacene-based FET with a graphene oxide support system (GOSS), composed of functionalized graphene oxide (GO) ink. The GOSS with a specific moiety group to capture the biomaterial of interest was inkjet printed on the pentacene FET. It provided modular receptor sites on the surface of pentacene, without alteration of the device. To evaluate the performance of a GOSS-pentacene FET biosensor, we detected the artificial DNA and circulating tumor cells as a proof-of-concept. The mobility of the FET dramatically changed upon capturing the target biomolecule on the GOSS. The FET exhibited high selectivity with 0.1 pmoles of the target DNA and a few cancer cells per detection volume. This study suggests a valuable sensor for medical diagnosis that can be mass produced effortlessly at low-cost.

4.
Theranostics ; 4(11): 1133-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25250094

RESUMEN

Theranostic agents present a promising clinical approach for cancer detection and treatment. We herein introduce a microbubble and liposome complex (MB-Lipo) developed for ultrasound (US) imaging and activation. The MB-Lipo particles have a hybrid structure consisting of a MB complexed with multiple Lipos. The MB components are used to generate high echo signals in US imaging, while the Lipos serve as a versatile carrier of therapeutic materials. MB-Lipo allows high contrast US imaging of tumor sites. More importantly, the application of high acoustic pressure bursts MBs, which releases therapeutic Lipos and further enhances their intracellular delivery through sonoporation effect. Both imaging and drug release could thus be achieved by a single US modality, enabling in situ treatment guided by real-time imaging. The MB-Lipo system was applied to specifically deliver anti-cancer drug and genes to tumor cells, which showed enhanced therapeutic effect. We also demonstrate the clinical potential of MB-Lipo by imaging and treating tumor in vivo.


Asunto(s)
Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Liposomas , Microburbujas , Sonido , Ultrasonografía/métodos , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA