Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(35): eadh8619, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656783

RESUMEN

Phototherapeutics has shown promise in treating various diseases without surgical or drug interventions. However, it is challenging to use it in inner-body applications due to the limited light penetration depth through the skin. Therefore, we propose an organic light-emitting diode (OLED) catheter as an effective photobiomodulation (PBM) platform useful for tubular organs such as duodenums. A fully encapsulated highly flexible OLED is mounted over a round columnar structure, producing axially uniform illumination without local hotspots. The biocompatible and airtight OLED catheter can operate in aqueous environments for extended periods, meeting the essential requirements for inner-body medical applications. In a diabetic Goto-Kakizaki (GK) rat model, the red OLED catheter delivering 798 mJ of energy is shown to reduce hyperglycemia and insulin resistance compared to the sham group. Results are further supported by the subdued liver fibrosis, illustrating the immense potential of the OLED-catheter-based internal PBM for the treatment of type 2 diabetes and other diseases yet to be identified.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Ratas , Catéteres , Diabetes Mellitus Tipo 2/terapia , Duodeno , Hiperglucemia/terapia , Fototerapia
2.
Sci Rep ; 13(1): 14070, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640762

RESUMEN

Organic light-emitting diode (OLED) microdisplays have received great attention owing to their excellent performance for augmented reality/virtual reality devices applications. However, high pixel density of OLED microdisplay causes electrical crosstalk, resulting in color distortion. This study investigated the current crosstalk ratio and changes in the color gamut caused by electrical crosstalk between sub-pixels in high-resolution full-color OLED microdisplays. A pixel structure of 3147 pixels per inch (PPI) with four sub-pixels and a single-stack white OLED with red, green, and blue color filters were used for the electrical crosstalk simulation. The results showed that the sheet resistance of the top and bottom electrodes of OLEDs rarely affected the electrical crosstalk. However, the current crosstalk ratio increased dramatically and the color gamut decreased as the sheet resistance of the common organic layer decreased. Furthermore, the color gamut of the OLED microdisplay decreased as the pixel density of the panel increased from 200 to 5000 PPI. Additionally, we fabricated a sub-pixel circuit to measure the electrical crosstalk current using a 3147 PPI scale multi-finger-type pixel structure and compared it with the simulation result.

3.
Food Sci Biotechnol ; 32(3): 283-298, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36778086

RESUMEN

Hydrolyzed vegetable proteins (HVPs) are widely used food flavorings. This study investigated the volatiles formed in thermally reacted model systems containing HVPs (made from defatted soy, corn gluten, and wheat gluten) and reducing sugars (glucose and fructose). Three types of HVPs, which had different free amino acid compositions, generated qualitatively and quantitatively different volatile compounds. In the results of principal component analysis, each thermally reacted system could be distributed according to type of HVPs and sugars. Aldehydes and pyrazines highly correlated with glucose- and fructose-containing model systems, respectively. In particular, model systems containing soy HVPs showed higher contents of sugar-degraded compounds, such as maltol, furfuryl alcohol, and cyclotene. However, some Strecker aldehydes and nitrogen-containing heterocyclic compounds, whose formation required amino acids, were more abundant in model systems containing corn and wheat HVP. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01194-w.

4.
Opt Express ; 30(13): 24155-24165, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225082

RESUMEN

Herein, the color gamut change by optical crosstalk between sub-pixels in high-resolution full-color organic light-emitting diode (OLED) microdisplays was numerically investigated. The color gamut of the OLED microdisplay decreased dramatically as the pixel density of the panel increased from 100 pixels per inch (PPI) to 3000 PPI. In addition, the increase in thickness of the passivation layer between the bottom electrode and the top color filter results in a decrease in the color gamut. We also calculated the color gamut change depending on the pixel structures in the practical OLED microdisplay panel, which had an aspect ratio of 32:9 and a pixel density of 2,490 PPI. The fence angle and height, refractive index of the passivation layer, black matrix width, and white OLED device structure affect the color gamut of the OLED microdisplay panel because of the optical crosstalk effect.

5.
Opt Express ; 30(7): 11959-11972, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473127

RESUMEN

Even though it is in high demand to introduce a nano-structure (NS) light extraction technology on a silicon nitride to be used as a thin film encapsulation material for an organic light-emitting diode (OLED), only an industry-incompatible wet method has been reported. This work demonstrates a double-layer NS fabrication on the silicon nitride using a two-step organic vapor phase deposition (OVPD) of an industry-compatible dry process. The NS showed a wrinkle-like shape caused by coalescence of the nano-lenses. The NS integrated top-emitting OLED revealed 40 percent enhancement of current efficiency and improvement of the luminance distribution and color change according to viewing angle.

6.
ACS Appl Mater Interfaces ; 13(46): 55391-55402, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34758613

RESUMEN

We present herein the first report of organic/inorganic hybrid thin-film encapsulation (TFE) developed as an encapsulation process for mass production in the display industry. The proposed method was applied to fabricate a top-emitting organic light-emitting device (TEOLED). The organic/inorganic hybrid TFE has a 1.5 dyad structure and was fabricated using plasma-enhanced atomic layer deposition (PEALD) and inkjet printing (IJP) processes that can be applied to mass production operations in the industry. Currently, industries use inorganic thin films such as SiNx and SiOxNy fabricated through plasma-enhanced chemical vapor deposition (PECVD), which results in film thickness >1 µm; however, in the present work, an Al2O3 inorganic thin film with a thickness of 30 nm was successfully fabricated using ALD. Furthermore, to decouple the crack propagation between the adjacent Al2O3 thin films, an acrylate-based polymer layer was printed between these layers using IJP to finally obtain the 1.5 dyad hybrid TFE. The proposed method can be applied to optoelectronic devices with various form factors such as rollables and stretchable displays. The hybrid TFE developed in this study has a transmittance of 95% or more in the entire visible light region and a very low surface roughness of less than 1 nm. In addition, the measurement of water vapor transmission rate (WVTR) using commercial MOCON equipment yielded a value of 5 × 10-5 gm-2 day-1 (37.8 °C and 100% RH) or less, approaching the limit of the measuring equipment. The TFE was applied to TEOLEDs and the improvement in optical properties of the device was demonstrated. The OLED panel was manufactured and operated stably, showing excellent consistency even in the actual display manufacturing process. The panel operated normally even after 363 days in air. The proposed organic/inorganic hybrid encapsulant manufacturing process is applicable to the display industry and this study provides basic guidelines that can serve as a foothold for the development of various technologies in academia and industry alike.

7.
Opt Express ; 29(15): 23131-23141, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614583

RESUMEN

Optical properties of benzimidazole (BI)-doped layer-by-layer graphene differ significantly from those of intrinsic graphene. Our study based on transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling reveals that such a difference stems from its peculiar stratified geometry formed in situ during the doping process. This work presents an effective thickness and optical constants that can treat these multi-stacked BI-doped graphene electrodes as a single equivalent medium. For verification, the efficiency and angular emission spectra of organic light-emitting diodes with the BI-doped graphene electrode are modeled with the proposed method, and we demonstrate that the calculation matches experimental results in a much narrower margin than that based on the optical properties of undoped graphene.

8.
Opt Express ; 28(18): 26519-26530, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32906924

RESUMEN

We propose an optimal outcoupling structure of a quantum-dot light-emitting diode (QLED) and present material properties based on numerical calculations via the ray-tracing method, in which light extraction properties are obtained according to the surface wrinkles on a substrate. After analyzing the designed microstructure elements, the optimal model was derived and applied to the QLEDs; consequently, the outcoupling efficiency enhanced by 31%. The liquid crystalline polymer forming the random surface wrinkles not only achieves an excellent light extraction through plasma crosslinking but also facilitates large-area processes. We propose an optical design rule for high-efficiency QLED design by analyzing the electro-optical efficiency, emission spectrum, and angular radiation pattern of the optical device.

9.
Nat Commun ; 11(1): 2732, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483210

RESUMEN

Thin-film transistor (TFT)-driven full-color organic light-emitting diodes (OLEDs) with vertically stacked structures are developed herein using photolithography processes, which allow for high-resolution displays of over 2,000 pixels per inch. Vertical stacking of OLEDs by the photolithography process is technically challenging, as OLEDs are vulnerable to moisture, oxygen, solutions for photolithography processes, and temperatures over 100 °C. In this study, we develop a low-temperature processed Al2O3/SiNx bilayered protection layer, which stably protects the OLEDs from photolithography process solutions, as well as from moisture and oxygen. As a result, transparent intermediate electrodes are patterned on top of the OLED elements without degrading the OLED, thereby enabling to fabricate the vertically stacked OLED. The aperture ratio of the full-color-driven OLED pixel is approximately twice as large as conventional sub-pixel structures, due to geometric advantage, despite the TFT integration. To the best of our knowledge, we first demonstrate the TFT-driven vertically stacked full-color OLED.

10.
Opt Express ; 27(8): 11057-11068, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052956

RESUMEN

The ratio of spontaneous emission inside a diode structure to that in free space is called the Purcell factor (F(λ)). The structure of organic light-emitting diodes (OLEDs) has a significant influence on the spontaneous emission rate of dipole emitters. Therefore, to describe the optical properties of OLEDs, it is essential to incorporate F(λ) in the description. However, many optical studies on OLEDs continue to be conducted without considering F(λ) for simplicity's sake. Hence, in this study, using carefully designed bottom- and top-emitting OLEDs, we show that the external quantum efficiency obtained without considering F(λ) can be over- or under-estimated, and in some cases, the margin of error may be significant. We also reveal that the subtle distribution of the electroluminescence spectrum can be explained properly only by including F(λ). Both these results stipulate the importance of including F(λ) to maintain a quantitative agreement between theoretical and experimental data. Hence, the inclusion of F(λ) is important for designing OLEDs with enhanced efficiency or desired spectral characteristics.

11.
Opt Express ; 26(14): 18351-18361, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114016

RESUMEN

We demonstrate independently and simultaneously controlled color-tunable organic light-emitting diodes (OLEDs) with vertically stacked blue, green, and red elements. The blue, green, and red elements were placed at the bottom, middle, and top positions, respectively, forming color-tunable OLEDs. The independently driven blue, green, and red elements in the color-tunable OLEDs exhibited low driving voltages of 5.3 V, 3.0 V, and 4.6 V, as well as high external quantum efficiencies of 11.1%, 10.9%, and 9.6%, respectively, at approximately 1000 cd/m2. Each element in the color-tunable OLEDs showed high-purity blue, green, and red colors with little parasitic emission owing to the delicately designed device structure resultant from optical simulations. The color-tunable OLEDs could produce any colors inside the triangle formed with blue (0.136, 0.261), green (0.246, 0.697), and red (0.614, 0.386) Commission Internationale de l'éclairage (CIE) 1931 color coordinates. In addition, the correlated color temperatures (CCTs) of white colors in the color-tunable OLED can be easily changed from the warm white to the cool white by controlling the red, green, and blue emissions simultaneously. The white colors in the color-tunable OLED have the CIE 1931 color coordinate of (0.304, 0.351), with a CCT of 6289 K and (0.504, 0.440), with a CCT of 2407K at the driving voltage of 5 V (blue), 2.8 V (green), 4.4 V (red), and 4.6 V (blue), 3 V (green), 5 V (red), respectively. Furthermore, the white color in the color-tunable OLED exhibited a high color rendering index (~88.7) due to vertically stacked three color system. Moreover, we successfully fabricated a large-sized, 14 × 12 pixel array of the color-tunable OLEDs to demonstrate lighting and display applications, respectively.

12.
ACS Appl Mater Interfaces ; 10(31): 26456-26464, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30010310

RESUMEN

Modification of multilayer graphene films was investigated for a cathode of organic light-emitting diodes (OLEDs). By doping the graphene/electron transport layer (ETL) interface with Li, the driving voltage of the OLED was reduced dramatically from 24.5 to 3.2 V at a luminance of 1000 cd/m2. The external quantum efficiency was also enhanced from 3.4 to 12.9%. Surface analyses showed that the Li doping significantly lowers the lowest unoccupied molecular orbital level of the ETL, thereby reducing the electron injection barrier and facilitating electron injection from the cathode. Impedance spectroscopy analyses performed on electron-only devices (EODs) revealed the existence of distributed trap states with a well-defined activation energy, which is successfully described by the Havriliak-Negami capacitance functions and the temperature-independent frequency dispersion parameters. In particular, the graphene EOD showed a unique high-frequency feature as compared to the indium tin oxide one, which could be explained by an additional parallel capacitance element.

13.
Opt Express ; 26(2): 617-626, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401944

RESUMEN

We propose an effective way to enhance the out-coupling efficiencies of organic light-emitting diodes (OLEDs) using graphene as a transparent electrode. In this study, we investigated the detrimental adsorption and internal optics occurring in OLEDs with graphene anodes. The optical out-coupling efficiencies of previous OLEDs with transparent graphene electrodes barely exceeded those of OLEDs with conventional transparent electrodes because of the weak microcavity effect. To overcome this issue, we introduced an internal random scattering layer for light extraction and reduced the optical absorption of the graphene by reducing the number of layers in the multilayered graphene film. The efficiencies of the graphene-OLEDs increased significantly with decreasing the number of graphene layers, strongly indicating absorption reduction. The maximum light extraction efficiency was obtained by using a single-layer graphene electrode together with a scattering layer. As a result, a widened angular luminance distribution with a remarkable external quantum efficiency and a luminous efficacy enhancement of 52.8% and 48.5%, respectively, was achieved. Our approach provides a demonstration of graphene-OLED having a performance comparable to that of conventional OLEDs.

14.
Opt Express ; 25(9): 9734-9742, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468353

RESUMEN

In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.

15.
Opt Express ; 24(21): 24161-24168, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828247

RESUMEN

White organic light-emitting diodes (WOLEDs) are regarded as the general lighting source. Although color rendering index (CRI) and luminous efficacy are usually in trade-off relation, we will discuss about the optimization of both characteristics, particularly focusing on the spectrum of a blue emitter. The emission at a shorter wavelength is substantially important for achieving very high CRI (> 90). The luminous efficacy of a phosphorescent blue emitter is low as its color falls in the deeper blue range; however, that does not show any significant influence on the WOLEDs. WOLEDs with different blue dopants are compared to confirm the calculation of the CRI and luminous efficacy, and the optimized WOLEDs exhibit luminous efficacy of 38.3 lm/W and CRI of 90.9.

16.
Nat Commun ; 7: 11791, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27250743

RESUMEN

Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

17.
Sci Rep ; 6: 24525, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27080164

RESUMEN

Graphene has been received a considerable amount of attention as a transparent conducting electrode (TCE) which may be able to replace indium tin oxide (ITO) to overcome the significant weakness of the poor flexibility of ITO. Given that graphene is the thinnest 2-dimensional (2D) material known, it shows extremely high flexibility, and its lateral periodic honeycomb structure of sp(2)-bonded carbon atoms enables ~2.3% of incident light absorption per layer. However, there is a trade-off between the electrical resistance and the optical transmittance, and the fixed absorption rate in graphene limits is use when fabricating devices. Therefore, a more efficient method which continuously controls the optical and electrical properties of graphene is needed. Here, we introduce a method which controls the optical transmittance and the electrical resistance of graphene through various thicknesses of the top Cu layers with a Cu/Ni metal catalyst structure used to fabricate a planar mesh pattern of single and multi-layer graphene. We exhibit a continuous transmittance change from 85% (MLG) to 97.6% (SLG) at an incident light wavelength of 550 nm on graphene samples simultaneously grown in a CVD quartz tube. We also investigate the relationships between the sheet resistances.

18.
Opt Express ; 24(5): 5356-5365, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092359

RESUMEN

Area-selective external light extraction films based on wrinkle structured films were applied to large transparent organic light-emitting diodes (TOLEDs) with auxiliary metal buses. To be specific, on the external surface of the glass, we selectively formed a wrinkle structured film, which was aligned to the auxiliary metal electrodes. The wrinkle-structured film was patterned using a photo-mask and UV curing, which has the same shape of the auxiliary metal electrodes. With this area-selective film, it was possible to enhance the external quantum efficiencies of the bottom and top emissions TOLEDs by 15.7% and 15.1%, respectively, without significant loss in transmittance. Widened angular luminance distributions were also achieved in both emissions directions.

19.
Sci Rep ; 5: 17748, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626439

RESUMEN

Graphene has attracted considerable attention as a next-generation transparent conducting electrode, because of its high electrical conductivity and optical transparency. Various optoelectronic devices comprising graphene as a bottom electrode, such as organic light-emitting diodes (OLEDs), organic photovoltaics, quantum-dot LEDs, and light-emitting electrochemical cells, have recently been reported. However, performance of optoelectronic devices using graphene as top electrodes is limited, because the lamination process through which graphene is positioned as the top layer of these conventional OLEDs is a lack of control in the surface roughness, the gapless contact, and the flexion bonding between graphene and organic layer of the device. Here, a multilayered graphene (MLG) as a top electrode is successfully implanted, via dry bonding, onto the top organic layer of transparent OLED (TOLED) with flexion patterns. The performance of the TOLED with MLG electrode is comparable to that of a conventional TOLED with a semi-transparent thin-Ag top electrode, because the MLG electrode makes a contact with the TOLED with no residue. In addition, we successfully fabricate a large-size transparent segment panel using the developed MLG electrode. Therefore, we believe that the flexion bonding technology presented in this work is applicable to various optoelectronic devices.

20.
Opt Express ; 23(21): 27306-14, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26480391

RESUMEN

Strategies to achieve efficient transparent organic light-emitting diodes (TrOLEDs) are presented. The emission zone position is carefully adjusted by monitoring the optical phase change upon reflection from the top electrode, which is significant when the thickness of the capping layer changes. With the proposed design strategy, external quantum efficiency and transmittance values as high as 15% and 80% are demonstrated simultaneously. The effect of surface plasmon polariton (SPP) loss from thin metal electrodes is also taken into account to correctly describe the full scaling behavior of the efficiency of TrOLEDs over key optical design parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...