Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311172, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351480

RESUMEN

Ruthenium oxide is currently considered as the promising alternative to Ir-based catalysts employed for proton exchange membrane water electrolyzers but still faces the bottlenecks of limited durability and slow kinetics. Herein, a 2D amorphous/crystalline heterophase ac-Cr0.53 Ru0.47 O2-δ substitutional solid solution with pervasive grain boundaries (GBs) is developed to accelerate the kinetics of acidic oxygen evolution reaction (OER) and extend the long-term stability simultaneously. The ac-Cr0.53 Ru0.47 O2-δ shows a super stability with a slow degradation rate and a remarkable mass activity of 455 A gRu -1 at 1.6 V vs RHE, which is ≈3.6- and 5.9-fold higher than those of synthesized RuO2 and commercial RuO2 , respectively. The strong interaction of Cr-O-Ru local units in synergy with the specific 2D structural characteristics of ac-Cr0.53 Ru0.47 O2-δ dominates its enhanced stability. Meanwhile, high-density GBs and the shortened Ru-O bonds tailored by amorphous/crystalline structure and Cr-O-Ru interaction regulate the adsorption and desorption rates of oxygen intermediates, thus accelerating the overall acidic OER kinetics.

2.
Angew Chem Int Ed Engl ; 63(12): e202400069, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38286756

RESUMEN

Although great efforts on the delicate construction of a built-in electric field (BIEF) to modify the electronic properties of active sites have been conducted, the substantial impact of BIEF coupled with electrode potential on the electrochemical reactions has not been clearly investigated. Herein, we designed an alkaline hydrogen evolution reaction (HER) catalyst composed of heterogeneous Ru-CoP urchin arrays on carbon cloth (Ru-CoP/CC) with a strong BIEF with the guidance of density functional theory (DFT) calculations. Impressively, despite its unsatisfactory activity at 10 mA cm-2 (overpotential of 44 mV), Ru-CoP/CC exhibited better activity (357 mV) than the benchmark Pt/C catalyst (505 mV) at 1 A cm-2 . Experimental and theoretical studies revealed that strong hydrogen adsorption on the interfacial Ru atoms created a high energy barrier for hydrogen desorption and spillover, resulting in unsatisfactory activity at low current densities. However, as the electrode potential became more negative (i.e., the current density increased), the barrier for hydrogen spillover from the interfacial Ru to the Co site, which had near-zero hydrogen adsorption energy, significantly decreased, thus greatly accelerating the whole alkaline HER process. This explains why the activity of Ru-CoP is relatively susceptible to the electrode potential compared to Pt/C.

3.
Angew Chem Int Ed Engl ; 63(7): e202307802, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37515479

RESUMEN

Lithium (Li) metal batteries (LMBs) are the "holy grail" in the energy storage field due to their high energy density (theoretically >500 Wh kg-1 ). Recently, tremendous efforts have been made to promote the research & development (R&D) of pouch-type LMBs toward practical application. This article aims to provide a comprehensive and in-depth review of recent progress on pouch-type LMBs from full cell aspect, and to offer insights to guide its future development. It will review pouch-type LMBs using both liquid and solid-state electrolytes, and cover topics related to both Li and cathode (including LiNix Coy Mn1-x-y O2 , S and O2 ) as both electrodes impact the battery performance. The key performance criteria of pouch-type LMBs and their relationship in between are introduced first, then the major challenges facing the development of pouch-type LMBs are discussed in detail, especially those severely aggravated in pouch cells compared with coin cells. Subsequently, the recent progress on mechanistic understandings of the degradation of pouch-type LMBs is summarized, followed with the practical strategies that have been utilized to address these issues and to improve the key performance criteria of pouch-type LMBs. In the end, it provides perspectives on advancing the R&Ds of pouch-type LMBs towards their application in practice.

4.
Angew Chem Int Ed Engl ; 63(3): e202317622, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061991

RESUMEN

Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.

5.
Angew Chem Int Ed Engl ; 63(7): e202315633, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38151468

RESUMEN

Even though grain boundaries (GBs) have been previously employed to increase the number of active catalytic sites or tune the binding energies of reaction intermediates for promoting electrocatalytic reactions, the effect of GBs on the tailoring of the local chemical environment on the catalyst surface has not been clarified thus far. In this study, a GBs-enriched iridium (GB-Ir) was synthesized and examined for the alkaline hydrogen evolution reaction (HER). Operando Raman spectroscopy and density functional theory (DFT) calculations revealed that a local acid-like environment with H3 O+ intermediates was created in the GBs region owing to the electron-enriched surface Ir atoms at the GBs. The H3 O+ intermediates lowered the energy barrier for water dissociation and provided enough hydrogen proton to promote the generation of hydrogen spillover from the sites at the GBs to the sites away from the GBs, thus synergistically enhancing the hydrogen evolution activity. Notably, the GB-Ir catalyst exhibited a high alkaline HER activity (10 mV @ 10 mA cm-2 , 20 mV dec-1 ). We believe that our findings will promote further research on GBs and the surface science of electrochemical reactions.

6.
Angew Chem Int Ed Engl ; 61(47): e202212196, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36164268

RESUMEN

Synergistic optimization of the elementary steps of water dissociation and hydrogen desorption for the hydrogen evolution reaction (HER) in alkaline media is a challenge. Herein, the Ru cluster anchored on a trace P-doped defective TiO2 substrate (Ru/P-TiO2 ) was synthesized as an electrocatalyst for the HER; it exhibited a commercial Pt/C-like geometric activity and an excellent mass activity of 9984.3 mA mgRu -1 at -0.05 V vs. RHE, which is 34.3 and 18.7 times higher than that of Pt/C and Ru/TiO2 , respectively. Experimental and theoretical studies indicated that using a rutile-TiO2 -crystal-phase substrate enhanced the HER activity more than the anatase phase. Rich surface oxygen vacancies on rutile-TiO2 facilitated the adsorption and dissociation of water, while the partial substitution of Ti4+ with P5+ enhanced H2 generation by facilitating hydrogen spillover from the Ru site to the surface P site, synergistically enhancing the HER activity.

7.
Chem Sci ; 13(21): 6159-6180, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35733905

RESUMEN

Zinc-air batteries (ZABs) have been considered as a next-generation battery system with high energy density and abundant resources. However, the sluggish multi-step reaction of the oxygen is the main obstacle for the practical application of ZABs. Therefore, bifunctional electrocatalysts with high stability and activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are greatly required to promote the catalytic reaction. In this review, we first explain the reaction mechanism of the ZABs, mainly focusing on multiple oxygen intermediates. Then, the latest studies on bifunctional electrocatalysts for the air cathodes and their progress of the ZABs are discussed with following aspects: platinum group metal, metal-free, transition metal, and metal compound-derived electrocatalysts. Finally, we highlight the advanced ZAB systems with the design of the full-temperature range operation, the all-solid-state, and the newly reported non-alkaline electrolyte, summarizing the remaining challenges and requirements of the future research directions.

8.
Angew Chem Int Ed Engl ; 61(25): e202201249, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35419922

RESUMEN

All-solid-state Li batteries (ASSBs) promise better performance and higher safety than the current liquid-based Li-ion batteries (LIBs). Sulfide ASSBs have been extensively studied and considerably advanced in recent decades. Research on identifying suitable cathode materials for sulfide ASSBs is currently well established, with great progress being made in the commercialization of layered cathodes in the liquid-based LIBs. Research on anode materials for sulfide ASSBs is of great importance for enhancing the battery energy density. However, it seems that little has been published that summarizes studies of anode materials for sulfide ASSBs and suggests future research directions. Thus, within this Minireview, we aim to provide an overview of previous and current research focused on anode materials for sulfide ASSBs and to suggest a future research direction for developing suitable anode systems for sulfide ASSBs.

9.
Nat Commun ; 13(1): 1270, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277494

RESUMEN

Ru nanoparticles have been demonstrated to be highly active electrocatalysts for the hydrogen evolution reaction (HER). At present, most of Ru nanoparticles-based HER electrocatalysts with high activity are supported by heteroatom-doped carbon substrates. Few metal oxides with large band gap (more than 5 eV) as the substrates of Ru nanoparticles are employed for the HER. By using large band gap metal oxides substrates, we can distinguish the contribution of Ru nanoparticles from the substrates. Here, a highly efficient Ru/HfO2 composite is developed by tuning numbers of Ru-O-Hf bonds and oxygen vacancies, resulting in a 20-fold enhancement in mass activity over commercial Pt/C in an alkaline medium. Density functional theory (DFT) calculations reveal that strong metal-support interaction via Ru-O-Hf bonds and the oxygen vacancies in the supported Ru samples synergistically lower the energy barrier for water dissociation to improve catalytic activities.

10.
Angew Chem Int Ed Engl ; 60(34): 18821-18829, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34121280

RESUMEN

The oxygen evolution reaction (OER) is a key reaction for many electrochemical devices. To date, many OER electrocatalysts function well in alkaline media, but exhibit poor performances in neutral and acidic media, especially the acidic stability. Herein, sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies (a/c-RuO2 ) was developed as a pH-universal OER electrocatalyst. The a/c-RuO2 shows remarkable resistance to acid corrosion and oxidation during OER, which leads to an extremely high catalytic stability, as confirmed by a negligible overpotential increase after continuously catalyzing OER for 60 h at pH=1. Besides, a/c-RuO2 also exhibits superior OER activities to commercial RuO2 and most reported OER catalysts under all pH conditions. Theoretical calculations indicated that the introduction of Na dopant and oxygen vacancy in RuO2 weakens the adsorption strength of the OER intermediates by engineering the d-band center, thereby lowering the energy barrier for OER.

11.
Adv Sci (Weinh) ; 8(15): e2004516, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34085783

RESUMEN

Ru nanoparticles (NPs) and single atoms (SAs)-based materials have been investigated as alternative electrocatalysts to Pt/C for hydrogen evolution reaction (HER). Exploring the dominant role of atomic- and nano-ruthenium as active sites in acidic and alkaline media is very necessary for optimizing the performance. Herein, an electrocatalyst containing both Ru SAs and NPs anchored on defective carbon (RuSA+NP /DC) has been synthesized via a Ru-alginate metal-organic supramolecules conversion method. RuSA+NP /DC exhibits low overpotentials of 16.6 and 18.8 mV at 10 mA cm-2 in acidic and alkaline electrolytes, respectively. Notably, its mass activities are dramatically improved, which are about 1.1 and 2.4 times those of Pt/C at an overpotential of 50 mV in acidic and alkaline media, respectively. Theoretical calculations reveal that Ru SAs own the most appropriate H* adsorption strength and thus, plays a dominant role for HER in acid electrolyte, while Ru NPs facilitate the dissociation of H2 O that is the rate-determining step in alkaline electrolyte, leading to a remarkable HER activity.

12.
Adv Mater ; 33(18): e2100352, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33783055

RESUMEN

In recent years, Li- and Mn-rich layered oxides (LMRs) have been vigorously explored as promising cathodes for next-generation, Li-ion batteries due to their high specific energy. Nevertheless, their actual implementation is still far from a reality since the trade-off relationship between the particle size and chemical reversibility prevents LMRs from achieving a satisfactory, industrial energy density. To solve this material dilemma, herein, a novel morphological and structural design is introduced to Li1.11 Mn0.49 Ni0.29 Co0.11 O2 , reporting a sub-micrometer-level LMR with a relatively delocalized, excess-Li system. This system exhibits an ultrahigh energy density of 2880 Wh L-1 and a long-lasting cycle retention of 83.1% after the 100th cycle for 45 °C full-cell cycling, despite its practical electrode conditions. This outstanding electrochemical performance is a result of greater lattice-oxygen stability in the delocalized excess-Li system because of the low amount of highly oxidized oxygen ions. Geometric dispersion of the labile oxygen ions effectively suppresses oxygen evolution from the lattice when delithiated, eradicating the rapid energy degradation in a practical cell system.

13.
ACS Appl Mater Interfaces ; 13(8): 9965-9974, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33599475

RESUMEN

Nickel-rich layered oxides (LiNi1-x-yCoxMnyO2; (1 - x - y) ≥ 0.6), the high-energy-density cathode materials of lithium-ion batteries (LIBs), are seriously unstable at voltages higher than 4.5 V versus Li/Li+ and temperatures higher than 50 °C. Herein, we demonstrated that the failure mechanism of a nickel-rich layered oxide (LiNi0.6Co0.2Mn0.2O2) behind the instability was successfully suppressed by employing cyanoethyl poly(vinyl alcohol) having pyrrolidone moieties (Pyrd-PVA-CN) as a metal-ion-chelating gel polymer electrolyte (GPE). The metal-ion-chelating GPE blocked the plating of transition-metal ions dissolved from the cathode by capturing the ions (anode protection). High-concentration metal-ion environments developed around the cathode surface by the GPE suppressed the irreversible phase transition of the cathode material from the layered structure to the rock-salt structure (cathode protection). Resultantly, the capacity retention was significantly improved at a high voltage and a high temperature. Capacity retention and coulombic efficiency of a full-cell configuration of a nickel-rich layered oxide with graphite were significantly improved in the presence of the GPE especially at a high cutoff voltage (4.4 V) and an elevated temperature (55 °C).

14.
Nat Commun ; 12(1): 838, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547320

RESUMEN

Solid electrolyte interphases generated using electrolyte additives are key for anode-electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate, have limited potential for simultaneously achieving a long lifespan and fast chargeability in high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic additive approach that allows to form a highly stable electrode-electrolyte interface architecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion transport while protecting the Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes. The retrosynthetically designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, provide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with 81.5% capacity retention after 400 cycles at 1 C and fast charging capability (1.9% capacity fading after 100 cycles at 3 C).

15.
Angew Chem Int Ed Engl ; 60(8): 4110-4116, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33174362

RESUMEN

Facilitating the dissociation of water and desorption of hydrogen are both crucial challenges for improving the hydrogen evolution reaction (HER) in alkaline media. Herein, we report the synthesis of heterostructure of Ru2 P/WO3 @NPC (N, P co-doped carbon) by a simple hydrothermal reaction using ruthenium and tungsten salts as precursors, followed by pyrolyzing under an Ar atmosphere. The Ru2 P/WO3 @NPC electrocatalyst exhibits an outstanding HER activity with an overpotential of 15 mV at a current density of 10 mA cm-2 and excellent durability in a 1.0 M KOH solution, outperforming state-of-the-art Pt/C and most reported electrocatalysts. Experimental results combined with density functional calculations reveal that the electron density redistribution in Ru2 P/WO3 @NPC is achieved by electron transfer from NPC to Ru2 P/WO3 and from Ru2 P to WO3 , which directly promotes the dissociation of water on W sites in WO3 and desorption of hydrogen on Ru sites in Ru2 P.

16.
ACS Appl Mater Interfaces ; 12(51): 57064-57070, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33315375

RESUMEN

While numerous oxygen electrocatalysts have been reported to enhance zinc-air battery (ZAB) performance, highly efficient electrocatalysts for the oxygen electrocatalysis need to be developed for broader commercialization of ZABs. Furthermore, areal (instead of volumetric) power density has been used to benchmark the performance of ZABs, often causing ambiguities or confusions. Here, we propose a methodology for evaluating the performance of a ZAB using the volumetric (rather than the areal) power density by taking into consideration the air electrode thickness. A nitrogen and sulfur co-doped metal-free oxygen reduction electrocatalyst (N-S-PC) is used as a model catalyst for this new metric. The electrocatalyst exhibited a half-wave potential of 0.88 V, which is similar to that of the Pt/C electrocatalyst (0.89 V) due to the effects of co-doping and a highly mesoporous structure. In addition, the use of volumetric activity allows fair comparison among different types of air electrodes. The N-S-PC-loaded air electrode demonstrated a higher peak power density (5 W cm-3) than the carbon felt or paper electrode in the ZAB test under the same testing conditions.

17.
Adv Mater ; 32(39): e2003040, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32820565

RESUMEN

Conventional nickel-rich cathode materials suffer from reaction heterogeneity during electrochemical cycling particularly at high temperature, because of their polycrystalline properties and secondary particle morphology. Despite intensive research on the morphological evolution of polycrystalline nickel-rich materials, its practical investigation at the electrode and cell levels is still rarely discussed. Herein, an intrinsic limitation of polycrystalline nickel-rich cathode materials in high-energy full-cells is discovered under industrial electrode-fabrication conditions. Owing to their highly unstable chemo-mechanical properties, even after the first cycle, nickel-rich materials are degraded in the longitudinal direction of the high-energy electrode. This inhomogeneous degradation behavior of nickel-rich materials at the electrode level originates from the overutilization of active materials on the surface side, causing a severe non-uniform potential distribution during long-term cycling. In addition, this phenomenon continuously lowers the reversibility of lithium ions. Consequently, considering the degradation of polycrystalline nickel-rich materials, this study suggests the adoption of a robust single-crystalline LiNi0.8 Co0.1 Mn0.1 O2 as a feasible alternative, to effectively suppress the localized overutilization of active materials. Such an adoption can stabilize the electrochemical performance of high-energy lithium-ion cells, in which superior capacity retention above ≈80% after 1000 cycles at 45 °C is demonstrated.

18.
Adv Mater ; 32(37): e2003286, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32743824

RESUMEN

Porous strategies based on nanoengineering successfully mitigate several problems related to volume expansion of alloying anodes. However, practical application of porous alloying anodes is challenging because of limitations such as calendering incompatibility, low mass loading, and excessive usage of nonactive materials, all of which cause a lower volumetric energy density in comparison with conventional graphite anodes. In particular, during calendering, porous structures in alloying-based composites easily collapse under high pressure, attenuating the porous characteristics. Herein, this work proposes a calendering-compatible macroporous architecture for a Si-graphite anode to maximize the volumetric energy density. The anode is composed of an elastic outermost carbon covering, a nonfilling porous structure, and a graphite core. Owing to the lubricative properties of the elastic carbon covering, the macroporous structure coated by the brittle Si nanolayer can withstand high pressure and maintain its porous architecture during electrode calendering. Scalable methods using mechanical agitation and chemical vapor deposition are adopted. The as-prepared composite exhibits excellent electrochemical stability of >3.6 mAh cm-2 , with mitigated electrode expansion. Furthermore, full-cell evaluation shows that the composite achieves higher energy density (932 Wh L-1 ) and higher specific energy (333 Wh kg-1 ) with stable cycling than has been reported in previous studies.

19.
ACS Nano ; 14(9): 11548-11557, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32794741

RESUMEN

Silicon for anodes in lithium-ion batteries has received much attention owing to its superior specific capacity. There has been a rapid increase of research related to void engineering to address the silicon failure mechanism stemming from the massive volume change during (dis)charging in the past decade. Nevertheless, conventional synthetic methods require complex synthetic procedures and toxic reagents to form a void space, so they have an obvious limitation to reach practical application. Here, we introduce SiCx consisting of nanocrystallite Si embedded in the inactive matrix of ß-SiC to fabricate various types of void structures using thermal etching with a scalable one-pot CVD method. The structural features of SiCx make the carbonaceous template possible to be etched selectively without Si oxidation at high temperature with an air atmosphere. Furthermore, bottom-up gas phase synthesis of SiCx ensures atomically identical structural features (e.g., homogeneously distributed Si and ß-SiC) regardless of different types of sacrificial templates. For these reasons, various types of SiCx hollow structures having shells, tubes, and sheets can be synthesized by simply employing different morphologies of the carbon template. As a result, the morphological effect of different hollow structures can be deeply investigated as well as the free volume effect originating from void engineering from both a electrochemical and computational point of view. In terms of selective thermal oxidation, the SiCx hollow shell achieves a much higher initial Coulombic efficiency (>89%) than that of the Si hollow shell (65%) because of its nonoxidative property originating from structural characteristics of SiCx during thermal etching. Moreover, the findings based on the clearly observed different electrochemical features between half-cell and full-cell configuration give insight into further Si anode research.

20.
Adv Mater ; 32(34): e2001944, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32656860

RESUMEN

Li- and Mn-rich layered oxides (LMRs) have emerged as practically feasible cathode materials for high-energy-density Li-ion batteries due to their extra anionic redox behavior and market competitiveness. However, sluggish kinetics regions (<3.5 V vs Li/Li+ ) associated with anionic redox chemistry engender LMRs with chemical irreversibility (first-cycle irreversibility, poor rate properties, voltage fading), which limits their practical use. Herein, the structural origin of this chemical irreversibility is revealed through a comparative study involving Li1.15 Mn0.51 Co0.17 Ni0.17 O2 with relatively localized and delocalized excess-Li in its lattice system. Operando fine-interval X-ray absorption spectroscopy is used to simultaneously observe the interplay between transition-metal-oxygen (TM-O) redox chemistry and TM migration behavior in real time. Density functional theory calculations show that excess-Li localization in the LMR structure attenuates TM-O covalency and stability, leading to overall chemical irreversibility. Hence, the delocalized excess-Li system is proposed as an alternative design for practically feasible LMR cathodes with restrained TM migration and sustainable O-redox chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...