Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Adv Vet Anim Res ; 10(2): 144-150, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37534070

RESUMEN

Objective: The study aimed to investigate the hepatoprotective effects of Gastrodia elata rhizome (GR) on thioacetamide (TAA)-induced liver injury in dogs. We evaluated serum biochemical and hematological parameters, with emphasis on alanine transaminase (ALT), alanine phosphates (ALP), and nitric oxide (NO) levels, in dogs with TAA-induced liver injury. Materials and Methods: The animals were divided into a control group (Con), TAA group, Silymarin group (Sil, 50 mg/kg), Gastrodia rhizome low dose (GRL) (low) + TAA, GRH (high) + TAA, and GR high-dose group (GRH) control group. GRL and GRH were given daily at 50 and 100 mg/kg, respectively. TAA was given on days 1, 4, and 7 at a dose of 300 mg/kg. Results: GR significantly reduced liver injury in treated animals, as indicated by lowered levels of ALT (about 32% at day 21 in both GRL + TAA and GRH + TAA groups), ALP (about 17% and 21% at day 21 in both GRL + TAA, GRH + TAA groups, respectively), and NO (about 36% at day 21 in both GRL + TAA, GRH + TAA groups) compared to the TAA control group. Hematological parameters showed mild changes during the experiment. High-performance liquid chromatography analysis revealed gastrodin, a major component of the GR extract, constitutes 2.6% of the extract. Conclusion: The GR demonstrated significant hepatoprotective effects against TAA-induced liver injury in dogs. The study provides evidence for the potential therapeutic use of GR in the management of liver diseases.

2.
Vet World ; 15(8): 2012-2020, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36313850

RESUMEN

Background and Aim: Osteoarthritis (OA) is a chronic, painful, degenerative inflammatory disease of the synovial joints. Regular use of nonsteroidal anti-inflammatory drugs to decrease OA pain can have severe side effects, such as gastric irritation, ulcers, and heart problems. Natural products are extensively used to minimize OA-associated pain and inflammatory reactions. Lilium lancifolium is commonly used to alleviate several diseases through its anti-inflammatory effects. This study examined the impact of L. lancifolium extract on alleviating pain and inflammation associated with articular cartilage damage. Materials and Methods: Hydro-ethanol extracts of the L. lancifolium bulb were used. The experimental animals (adult beagle dogs) were divided into four groups: sham, which received neither treatment nor surgery; placebo, which received an empty gelatin capsule; glucosamine, which received glutamine (60 mg/kg); and L. lancifolium, which received an L. lancifolium extract-filled (60 mg/kg) gelatin capsule for 8 weeks. OA was induced by an expert orthopedic surgeon in 2-year-old dogs through resection of cranial cruciate ligament and lateral collateral ligament. Inflammatory cytokines, enzymes, lameness score, radiology, and histological changes were assessed. Results: Our experiments showed that long-term oral therapy with L. lancifolium alleviated inflammation and increased histological damage. L. lancifolium treatment effectively reduced cytokines, such as interleukin-6, metalloproteinase-9, leukotriene-4, prostaglandin, and cyclo-oxygenase in dogs with OA, suggesting the potential to minimize inflammatory reactions in OA. L. lancifolium showed anti-inflammatory qualities in dogs with OA. This effect was comparable with that of glucosamine OA treatment. Conclusion: L. lancifolium supplementation represents a possible therapeutic and management option in this model of OA.

3.
Vet World ; 15(8): 1996-2003, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36313853

RESUMEN

Background and Aim: Canine atopic dermatitis (CAD) is a hereditary susceptibility to the development of allergic symptoms in response to repeated exposure to generally innocuous substances known as "allergens." Allergens can be plants, animals, mold, mites, or milk. At present, serological enzyme-linked immunoassay (ELISA) kits are used for immunoglobulin E (IgE)-specific allergen detection due to their simplicity and accuracy. This study aimed to detect allergens in dogs with CAD and determine how they differ according to season, breed, age, and sex using a serological test in six provinces in South Korea for 12 months. This will allow practitioners to easily understand the risk factors related to CAD. Materials and Methods: In this study, IgE allergen-specific ELISA kits were used. The allergens were detected in serum samples collected from different regions considering season, sex, breed, and age. Allergens were divided into the following Ten categories: 1. Dairy, yeast, and egg, 2. grains, 3. vegetables, 4. meat, 5. seafood, 6. animals, 7. mold, 8. insects, 9. mites, and 10. trees. Results: The percentage of allergens detected in males (54.8%) was higher than that of females (45.2%); 54.2% of allergens occurred in 3-year-old dogs or older. Moreover, regarding frequency, 65.6% of overall allergens occur during autumn; Chungcheongnam-do and Jeollabuk-do showed 20.7% and 20.9%, respectively. Additionally, among allergens categories, notable allergen occurrence was as follows: 38.3% corn; 28.7% potatoes; 22.7% duck; 24.4%,codfish; 31.2% animal wool; 95.6% Aspergillus fumigatus; 31.9% flea; 41.8% oak; and 25.0% sheep's sorrel grass. Conclusion: This study showcases the frequency of 60 allergens in six provinces detected in dogs with CAD; most likely from food or the environment using serological ELISA kits. Environmental sensitizer results can be considered for humans suffering from allergies to avoid a similar environment. A large-scale study can be performed to evaluate the allergens in the state. However, neither a skin test nor feed analysis was conducted, which is a limitation of this study.

4.
Biomed Pharmacother ; 151: 113186, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643063

RESUMEN

Ulcerative colitis (UC) is a severe inflammatory disease that has spread throughout the world. Cirsium japonicum (CJ) and Aralia elata (AE) are natural herbs with potent antioxidative antidiabetics and anti-inflammatory effects. In this investigation, we studied the defensive role of the combination of CJ and AE against LPS-induced inflammation in RAW 264.7 cells, dextran sulfate sodium (DSS)-induced colitis in mice, and acetic acid-induced colitis in dogs. MTT assay was performed to identify the toxic effect of CJ and AE extracts. NO, and MDA level was also measured by NO and MDA assay. To measure the pro-inflammatory protein expression, a western blot was performed. To induce colitis, 3% DSS was used for mice and 6% acetic acid was used for dogs. Histopathology and colonoscopy were executed to detect the effect of extracts. CJ and AE pretreatment reduced the level of NO, MDA, and the expression of pro-inflammatory proteins cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in RAW 264.7. Compared to the separate doses of CJ and AE, the combined dose of CJ and AE significantly reduced clinical symptoms induced by DSS in mice and acetic acid in dogs including weight loss, bloody stool, shortening of the colon, and the severity of colitis and degree of histological damage in the colon. Therefore, these results indicated that a combined dose of CJ and AE has a protective effect against LPS-induced RAW 264.7 cells, DSS-mediated colonic inflammation in mice, and acetic acid-induced colitis in dogs.


Asunto(s)
Aralia , Cirsium , Colitis Ulcerosa , Colitis , Animales , Antiinflamatorios/efectos adversos , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Perros , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Células RAW 264.7
5.
Mol Med Rep ; 25(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34796906

RESUMEN

Although multi­organ dysfunction is associated with the survival rate following cardiac arrest (CA), the majority of studies to date have focused on hearts and brains, and few studies have considered renal failure. The objective of the present study, therefore, was to examine the effects of therapeutic hypothermia on the survival rate, pathophysiology and antioxidant enzymes in rat kidneys following asphyxial CA. Rats were sacrificed one day following CA. The survival rate, which was estimated using Kaplan­Meier analysis, was 42.9% one day following CA. However, hypothermia, which was induced following CA, significantly increased the survival rate (71.4%). In normothermia rats with CA, the serum blood urea nitrogen level was significantly increased one day post­CA. In addition, the serum creatinine level was significantly increased one day post­CA. However, in CA rats exposed to hypothermia, the levels of urea nitrogen and creatinine significantly decreased following CA. Histochemical staining revealed a significant temporal increase in renal injury after the normothermia group was subjected to CA. However, renal injury was significantly decreased in the hypothermia group. Immunohistochemical analysis of the kidney revealed a significant decrease in antioxidant enzymes (copper­zinc superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase and catalase) with time in the normothermia group. However, in the hypothermia group, these enzymes were significantly elevated following CA. Collectively, the results revealed that renal dysfunction following asphyxial CA was strongly associated with the early survival rate and therapeutic hypothermia reduced renal injury via effective antioxidant mechanisms.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Antioxidantes/farmacología , Asfixia/complicaciones , Asfixia/terapia , Paro Cardíaco/terapia , Hipotermia Inducida/métodos , Riñón/efectos de los fármacos , Riñón/lesiones , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Nitrógeno de la Urea Sanguínea , Encéfalo/fisiopatología , Creatinina , Modelos Animales de Enfermedad , Corazón/fisiopatología , Hipotermia , Riñón/patología , Riñón/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Tasa de Supervivencia
6.
Exp Ther Med ; 22(3): 1031, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34373717

RESUMEN

The present study aimed to investigate the renoprotective effect of therapeutic hypothermia (TH) on renal ischemia-reperfusion injury (RI/RI) induced by asphyxial cardiac arrest (CA) in rats. A total of 48 male rats were randomly divided into five groups: i) Sham (n=6); ii) Normothermia + CA (Normo.) (n=14); iii) Normo. and 2 h of TH after return of spontaneous circulation (ROSC) (n=12); iv) Normo. and 4 h of TH after ROSC (n=9); and v) Normo. and 6 h of TH after ROSC (n=7). All rats except the Sham group underwent asphyxia CA and were sacrificed 1 day after ROSC. The survival rate increased from 42.8% in the Normo. group to 50, 66.6 and 85.7% in the groups with 2, 4 and 6 h of TH after CA, respectively. TH attenuated the histopathological changes of the renal tissues following ROSC and the levels of blood urea nitrogen, serum creatinine and malondialdehyde in renal tissues. On immunohistochemistry, the relative optical density of nuclear erythroid-related factor-2 (Nrf2) and heme oxygenase (HO-1) expression in renal tissues increased in the Normo. group compared with that in the Sham group and exhibited further significant increases at 6 h of TH after ROSC. In conclusion, TH attenuated renal injury and increased the expression of Nrf2 and HO-1 in a TH treatment time-dependent manner.

7.
Exp Ther Med ; 21(6): 626, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33968162

RESUMEN

Hypothermic treatment is known to protect against cardiac arrest (CA) and improve survival rate. However, few studies have evaluated the CA-induced liver damage and the effects of hypothermia on this damage. Therefore, the aim of the present study was to determine possible protective effects of hypothermia on the liver after asphyxial CA. Rats were subjected to a 5-min asphyxial CA followed by return of spontaneous circulation (ROSC). The body temperature was controlled at 37±0.5˚C (normothermia group) or 33±0.5˚C (hypothermia group) for 4 h after ROSC. Livers were examined at 6, 12 h, 1 and 2 days after ROSC. Histopathological examination was performed by H&E staining. Alterations in the expression levels of pro-inflammatory (TNF-α and interleukin IL-2) and anti-inflammatory cytokines (IL-4 and IL-13) were investigated by immunohistochemistry. Sinusoidal dilatation and vacuolization were observed after asphyxial CA by histopathological examination. However, these CA-induced structural alterations were prevented by hypothermia. In immunohistochemical examination, the expression levels of pro-inflammatory cytokines were reduced in the hypothermia group compared with those in the normothermia group while the expression levels of anti-inflammatory cytokines were increased in the hypothermia group compared with those in the normothermia group. In conclusion, hypothermic treatment for 4 h following asphyxial CA in rats inhibited the increase of pro-inflammatory cytokines and stimulated the expression of anti-inflammatory cytokines compared with the normothermic group. The results of the present study suggested that hypothermic treatment after asphyxial CA reduced liver damage via the regulation of inflammation.

8.
J Therm Biol ; 94: 102761, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33293002

RESUMEN

Cardiac arrest (CA) is a leading cause of mortality worldwide. Most of post-resuscitation related deaths are due to post-cardiac arrest syndrome (PCAS). After cardiopulmonary resuscitation (CPR), return of spontaneous circulation (ROSC) leads to renal ischemia-reperfusion injury, also known as PCAS. Many studies have focused on brain and heart injuries after ROSC, but renal failure has largely been ignored. Therefore, we investigated the protective effects of therapeutic hypothermia (TH) on asphyxial CA-induced renal injury in rats. Thirty rats were randomly divided into five groups: 1) the control group (sham); 2) the normothermic CA (nor.); 3) a normothermic CA group that received TH immediately within 2 h after CPR (Hypo. 2 hrs); 4) a normothermic CA group that received TH within 4 h after CPR (Hypo. 4 hrs); and 5) a normothermia CA group that received TH within 6 h after CPR (Hypo. 6 h). One day after CPR, all rats were sacrificed. Compared with the normothermic CA group, the TH groups demonstrated significantly increased survival rate (P < 0.05); decreased serum blood urea nitrogen, creatinine, and lactate dehydrogenase levels; and lower histological damage degree and malondialdehyde concentration in their renal tissue. Terminal deoxynucleotidyl transferase dUTP nick end labeling stain revealed that the number of apoptotic cells significantly decreased after 4 h and 6 h of TH compared to the results seen in the normothermic CA group. Moreover, TH downregulated the expression of cyclooxygenase-2 in the renal cortex compared to the normothermic CA group one day after CPR. These results suggest that TH exerts anti-apoptotic, anti-inflammatory, and anti-oxidative effects immediately after ROSC that protect against renal injury.


Asunto(s)
Paro Cardíaco/terapia , Hipotermia Inducida , Enfermedades Renales/terapia , Animales , Asfixia/complicaciones , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Ciclooxigenasa 2/metabolismo , Paro Cardíaco/sangre , Paro Cardíaco/etiología , Paro Cardíaco/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , L-Lactato Deshidrogenasa/sangre , Masculino , Malondialdehído/metabolismo , Ratas Sprague-Dawley
9.
Antioxidants (Basel) ; 9(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906329

RESUMEN

: Hypothermia enhances outcomes of patients after resuscitation after cardiac arrest (CA). However, the underlying mechanism is not fully understood. In this study, we investigated effects of hypothermic therapy on neuronal damage/death, microglial activation, and changes of endogenous antioxidants in the anterior horn in the lumbar spinal cord in a rat model of asphyxial CA (ACA). A total of 77 adult male Sprague-Dawley rats were randomized into five groups: normal, sham ACA plus (+) normothermia, ACA + normothermia, sham ACA + hypothermia, and ACA + hypothermia. ACA was induced for 5 min by injecting vecuronium bromide. Therapeutic hypothermia was applied after return of spontaneous circulation (ROSC) via rapid cooling with isopropyl alcohol wipes, which was maintained at 33 ± 0.5 °C for 4 h. Normothermia groups were maintained at 37 ± 0.2 °C for 4 h. Neuronal protection, microgliosis, oxidative stress, and changes of endogenous antioxidants were evaluated at 12 h, 1 day, and 2 days after ROSC following ACA. ACA resulted in neuronal damage from 12 h after ROSC and evoked obvious degeneration/loss of spinal neurons in the ventral horn at 1 day after ACA, showing motor deficit of the hind limb. In addition, ACA resulted in a gradual increase in microgliosis with time after ACA. Therapeutic hypothermia significantly reduced neuronal loss and attenuated hind limb dysfunction, showing that hypothermia significantly attenuated microgliosis. Furthermore, hypothermia significantly suppressed ACA-induced increases of superoxide anion production and 8-hydroxyguanine expression, and significantly increased superoxide dismutase 1 (SOD1), SOD2, catalase, and glutathione peroxidase. Taken together, hypothermic therapy was found to have a substantial impact on changes in ACA-induced microglia activation, oxidative stress factors, and antioxidant enzymes in the ventral horn of the lumbar spinal cord, which closely correlate with neuronal protection and neurological performance after ACA.

10.
J Therm Biol ; 87: 102466, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31999601

RESUMEN

To date, hypothermia has focused on improving rates of resuscitation to increase survival in patients sustaining cardiac arrest (CA). Towards this end, the role of body temperature in neuronal damage or death during CA needs to be determined. However, few studies have investigated the effect of regional temperature variation on survival rate and neurological outcomes. In this study, adult male rats (12 week-old) were used under the following four conditions: (i) whole-body normothermia (37 ± 0.5 °C) plus (+) no asphyxial CA, (ii) whole-body normothermia + CA, (iii) whole-body hypothermia (33 ± 0.5 °C)+CA, (iv) body hypothermia/brain normothermia + CA, and (v) brain hypothermia/body normothermia + CA. The survival rate after resuscitation was significantly elevated in groups exposed to whole-body hypothermia plus CA and body hypothermia/brain normothermia plus CA, but not in groups exposed to whole-body normothermia combined with CA and brain hypothermia/body normothermia plus CA. However, the group exposed to hypothermia/brain normothermia combined with CA exhibited higher neuroprotective effects against asphyxial CA injury, i.e. improved neurological deficit and neuronal death in the hippocampus compared with those involving whole-body normothermia combined with CA. In addition, neurological deficit and neuronal death in the group of rat exposed to brain hypothermia/body normothermia and CA were similar to those in the rats subjected to whole-body normothermia and CA. In brief, only brain hypothermia during CA was not associated with effective survival rate, neurological function or neuronal protection compared with those under body (but not brain) hypothermia during CA. Our present study suggests that regional temperature in patients during CA significantly affects the outcomes associated with survival rate and neurological recovery.


Asunto(s)
Temperatura Corporal , Paro Cardíaco/fisiopatología , Hipotermia Inducida/métodos , Hipoxia Encefálica/fisiopatología , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Muerte Celular , Hipoxia Encefálica/prevención & control , Hipoxia Encefálica/terapia , Masculino , Neuronas/patología , Ratas , Ratas Sprague-Dawley
11.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540405

RESUMEN

Compelling evidence from preclinical and clinical studies has shown that mild hypothermia is neuroprotective against ischemic stroke. We investigated the neuroprotective effect of post-risperidone (RIS) treatment against transient ischemic injury and its mechanisms in the gerbil brain. Transient ischemia (TI) was induced in the telencephalon by bilateral common carotid artery occlusion (BCCAO) for 5 min under normothermic condition (37 ± 0.2 °C). Treatment of RIS induced hypothermia until 12 h after TI in the TI-induced animals under uncontrolled body temperature (UBT) compared to that under controlled body temperature (CBT) (about 37 °C). Neuroprotective effect was statistically significant when we used 5 and 10 mg/kg doses (p < 0.05, respectively). In the RIS-treated TI group, many CA1 pyramidal neurons of the hippocampus survived under UBT compared to those under CBT. In this group under UBT, post-treatment with RIS to TI-induced animals markedly attenuated the activation of glial cells, an increase of oxidative stress markers [dihydroethidium, 8-hydroxy-2' -deoxyguanosine (8-OHdG), and 4-Hydroxynonenal (4-HNE)], and a decrease of superoxide dismutase 2 (SOD2) in their CA1 pyramidal neurons. Furthermore, RIS-induced hypothermia was significantly interrupted by NBOH-2C-CN hydrochloride (a selective 5-HT2A receptor agonist), but not bromocriptine mesylate (a D2 receptor agonist). Our findings indicate that RIS-induced hypothermia can effectively protect neuronal cell death from TI injury through attenuation of glial activation and maintenance of antioxidants, showing that 5-HT2A receptor is involved in RIS-induced hypothermia. Therefore, RIS could be introduced to reduce body temperature rapidly and might be applied to patients for hypothermic therapy following ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Risperidona/uso terapéutico , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patología , Hipotermia/inducido químicamente , Hipotermia Inducida/métodos , Masculino , Estrés Oxidativo/efectos de los fármacos
12.
J Therm Biol ; 83: 1-7, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31331507

RESUMEN

Spinal cord ischemia can result from cardiac arrest. It is an important cause of severe spinal cord injury that can lead to serious spinal cord disorders such as paraplegia. Hypothermia is widely acknowledged as an effective neuroprotective intervention following cardiac arrest injury. However, studies on effects of hypothermia on spinal cord injury following asphyxial cardiac arrest and cardiopulmonary resuscitation (CA/CPR) are insufficient. The objective of this study was to examine effects of hypothermia on motor deficit of hind limbs of rats and vulnerability of their spinal cords following asphyxial CA/CPR. Experimental groups included a sham group, a group subjected to CA/CPR, and a therapeutic hypothermia group. Severe motor deficit of hind limbs was observed in the control group at 1 day after asphyxial CA/CPR. In the hypothermia group, motor deficit of hind limbs was significantly attenuated compared to that in the control group. Damage/death of motor neurons in the lumbar spinal cord was detected in the ventral horn at 1 day after asphyxial CA/CPR. Neuronal damage was significantly attenuated in the hypothermia group compared to that in the control group. These results indicated that therapeutic hypothermia after asphyxial CA/CPR significantly reduced hind limb motor dysfunction and motoneuronal damage/death in the ventral horn of the lumbar spinal cord following asphyxial CA/CPR. Thus, hypothermia might be a therapeutic strategy to decrease motor dysfunction by attenuating damage/death of spinal motor neurons following asphyxial CA/CPR.


Asunto(s)
Paro Cardíaco/complicaciones , Hipotermia Inducida/métodos , Isquemia/terapia , Neuronas Motoras/fisiología , Paraplejía/terapia , Animales , Reanimación Cardiopulmonar/efectos adversos , Paro Cardíaco/terapia , Isquemia/etiología , Región Lumbosacra/irrigación sanguínea , Región Lumbosacra/fisiopatología , Masculino , Paraplejía/etiología , Ratas , Ratas Sprague-Dawley
13.
Exp Neurol ; 320: 112983, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251935

RESUMEN

Although multiple reports using animal models have confirmed that melatonin appears to promote neuroprotective effects following ischemia/reperfusion-induced brain injury, the relationship between its protective effects and activation of autophagy in Purkinje cells following asphyxial cardiac arrest and cardiopulmonary resuscitation (CA/CPR) remains unclear. Rats used in this study were randomly assigned to 6 groups as follows; vehicle-treated sham operated group, vehicle-treated asphyxial CA/CPR operated group, melatonin-treated sham operated group, melatonin-treated asphyxial CA/CPR operated group, PDOT (a MT2 melatonin receptor antagonist) plus (+) melatonin-treated sham operated group and PDOT+melatonin-treated asphyxial CA/CPR operated group. Melatonin (20 mg/kg, i.p., 4 times before CA and 3 times after CA) treatment significantly improved survival rate and neurological deficit compared with the vehicle-treated asphyxial CA/CPR rats (survival rates ≥40% vs 10%), showing that melatonin treatment exhibited protective effect against asphyxial CA/CPR-induced Purkinje cell death. The protective effect of melatonin against CA/CPR-induced Purkinje cell death paralleled a remarkable attenuation of autophagy-like processes (Beclin-1, Atg7 and LC3), as well as a dramatic reduction in superoxide anion radical (O2·-), intense enhancements of CuZn superoxide dismutase (SOD1) and MnSOD (SOD2) expressions. Furthermore, the protective effect was notably reversed by treatment with PDOT, which is a selective MT2 antagonist. In brief, melatonin conferred neuroprotection against asphyxial CA/CPR-induced Purkinje cell death via inhibiting autophagic activation by reducing expressions of O2·- and increasing expressions of antioxidant enzymes, and suggests that MT2 is involved in neuroprotective effect of melatonin against Purkinje cell death caused by asphyxial CA/CPR.


Asunto(s)
Antioxidantes/farmacología , Paro Cardíaco/patología , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Células de Purkinje/efectos de los fármacos , Animales , Asfixia/etiología , Autofagia/efectos de los fármacos , Paro Cardíaco/complicaciones , Masculino , Fármacos Neuroprotectores/farmacología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptor de Melatonina MT2/metabolismo
14.
Neural Regen Res ; 14(9): 1536-1543, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31089052

RESUMEN

Recently, we have reported that Oenanthe javanica extract (OJE) displays strong neuroprotective effect against ischemic damage after transient global cerebral ischemia. However, neuroprotective mechanisms of OJE have not been fully identified. Thus, this study investigated the neuroprotection of OJE in the hippocampal CA1 area and its anti-inflammatory activity in gerbils subjected to 5 minutes of transient global cerebral ischemia. We treated the animals by intragastrical injection of OJE (100 and 200 mg/kg) once daily for 1 week prior to transient global cerebral ischemia. Neuroprotection of OJE was observed by immunohistochemistry for neuronal nuclear antigen and histofluorescence staining for Fluoro-Jade B. Immunohistochemistry of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 was done for astrocytosis and microgliosis, respectively. To investigate the neuroprotective mechanisms of OJE, we performed immunohistochemistry of tumor necrosis factor-alpha and interleukin-2 for pro-inflammatory function and interleukin-4 and interleukin-13 for anti-inflammatory function. When we treated the animals by intragastrical administration of 200 mg/kg of OJE, hippocampal CA1 pyramidal neurons were protected from transient global cerebral ischemia and cerebral ischemia-induced gliosis was inhibited in the ischemic hippocampal CA1 area. We also found that interleukin-4 and -13 immunoreactivities were significantly increased in pyramidal neurons of the ischemic CA1 area after OJE pretreatment, and the increased immunoreactivities were sustained in the CA1 pyramidal neurons after transient global cerebral ischemia. However, OJE pretreatment did not increase interleukin-2 and tumor necrosis factor-alpha immunoreactivities in the CA1 pyramidal neurons. Our findings suggest that pretreatment with OJE can protect neurons and attenuate gliosis from transient global cerebral ischemia via increasing expressions of interleukin-4 and -13. The experimental plan of this study was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) in Kangwon National University (approval No. KW-160802-1) on August 10, 2016.

15.
Res Vet Sci ; 124: 433-438, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31082573

RESUMEN

It is now established that diethylstilbestrol (DES) has damaging effects on the male reproductive system. However, to date there have been no studies morphological analysis of adult rat testes upon treatment with DES. Here, we examined whether DES has any significant morphological effect on steroidogenesis and spermatogenesis. DES was injected subcutaneously at 3 µg/day and 30 µg/day in adult male Sprague-Dawley (SD) rats for two different treatment lengths (1 or 3 weeks), after which rats were necropsied. TUNEL labeling, cell counting, and morphological analysis were used to evaluate the effects of DES. A high dose of DES and longer exposure severely affected the cellular development of the testis. Specifically, DES treatment disrupted both steroidogenesis and spermatogenesis by decreasing the number of spermatogonia, Sertoli cells, and Leydig cells in a dose- and time-dependent manner. Thus, DES may account for decreases in the number of spermatogenic cells, Sertoli cells and Leydig cells, which in turn may lead to reduced fertility in males.


Asunto(s)
Dietilestilbestrol/toxicidad , Estrógenos no Esteroides/toxicidad , Células Intersticiales del Testículo/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Sprague-Dawley
16.
Antioxidants (Basel) ; 9(1)2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31888114

RESUMEN

Oxidative stress plays a vital role in neurodegenerative diseases. Cornus officinalis (CC) has a wide range of pharmacological activities (e.g., antioxidant, neuroprotective, and anti-inflammatory). The present study was undertaken to elucidate the neuroprotective mechanism of CC and fermented CC (FCC) on stress and H2O2-induced oxidative stress damage in rats and SH-SY5Y cells. A dose of 100 mg/kg CC or FCC was orally administered to rats 1 h prior to immobilization 2 h per day for 14 days. CC, especially FCC administration decreased immobility time in forced swim test (FST), effectively alleviated the oxidative stress, and remarkably decreased corticosterone, ß-endorphin and increased serotonin levels, respectively. In cells, CC and FCC significantly inhibited reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release and significantly increased the genes expression of antioxidant and neuronal markers, such as superoxide dismutase (SOD), catalase (CAT), and brain-derived neurotrophic factor (BDNF). Moreover, the pro-apoptotic factor Bax and anti-apoptotic factor Bcl-2 (Bax/Bcl-2) ratio was regulated by CC and FCC pretreatment. Both in rats and cells, CC and FCC downregulated mitogen-activated protein kinase (MAPK) phosphorylation. Taken together, these results demonstrated that CC and particularly FCC ameliorated oxidative stress and may be used on the neuroprotection.

17.
Anat Cell Biol ; 51(2): 128-135, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29984058

RESUMEN

Cardiac arrest (CA) is sudden loss of heart function and abrupt stop in effective blood flow to the body. The patients who initially achieve return of spontaneous circulation (RoSC) after CA have low survival rate. It has been known that multiorgan dysfunctions after RoSC are associated with high morbidity and mortality. Most previous studies have focused on the heart and brain in RoSC after CA. Therefore, the aim of this research was to perform serological, physiological, and histopathology study in the lung and to determine whether or how pulmonary dysfunction is associated with low survival rate after CA. Experimental animals were divided into sham-operated group (n=14 at each point in time), which was not subjected to CA operation, and CA-operated group (n=14 at each point in time), which was subjected to CA. The rats in each group were sacrificed at 6 hours, 12 hours, 24 hours, and 2 days, respectively, after RoSC. Then, pathological changes of the lungs were analyzed by hematoxylin and eosin staining, Western blot and immunohistochemistry for tumor necrosis factor α (TNF-α). The survival rate after CA was decreased with time past. We found that histopathological score and TNF-α immunoreactivity were significantly increased in the lung after CA. These results indicate that inflammation triggered by ischemia-reperfusion damage after CA leads to pulmonary injury/dysfunctions and contributes to low survival rate. In addition, the finding of increase in TNF-α via inflammation in the lung after CA would be able to utilize therapeutic or diagnostic measures in the future.

18.
J Tissue Eng Regen Med ; 12(7): 1646-1657, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29763986

RESUMEN

There is lack of researches on effects of intravenously injected mesenchymal stem cells (MSCs) against transient cerebral ischemia (TCI). We investigated the disruption of the neurovascular unit (NVU), which comprises the blood-brain barrier and examined entry of human dermis-derived MSCs (hDMSCs) into the damaged hippocampal CA1 area in a gerbil model of TCI and their subsequent effects on neuroprotection and cognitive function. Impairments of neurons and blood-brain barrier were examined by immunohistochemistry, electron microscopy, and Evans blue and immunoglobulin G leakage. Neuronal death was observed in pyramidal neurons 5-day postischemia. NVU were structurally damaged; in particular, astrocyte end-feet were severely damaged from 2-day post-TCI and immunoglobulin G leaked out of the CA1 area 2 days after 5 min of TCI; however, Evans blue extravasation was not observed. On the basis of the results of NVU damages, ischemic gerbils received PKH2-transfected hDMSCs 3 times at early times (3 hr, 2, and 5 days) after TCI, and fluorescence imaging was used to detect hDMSCs in the tissue. PKH2-transfected hDMSCs were not found in the CA1 from immediate time to 8 days after injection, although they were detected in the liver. Furthermore, hDMSCs transplantation did not protect CA1 pyramidal neurons and did not improve cognitive impairment. Intravenously transplanted hDMSCs did not migrate to the damaged CA1 area induced by TCI. These findings suggest no neuroprotection and cognitive improvement by intravenous hDMSCs transplantation after 5 min of TCI.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Dermis/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Piramidales/metabolismo , Animales , Compuestos de Bifenilo , Barrera Hematoencefálica/lesiones , Barrera Hematoencefálica/patología , Isquemia Encefálica/patología , Isquemia Encefálica/terapia , Dermis/patología , Modelos Animales de Enfermedad , Gerbillinae , Xenoinjertos , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Células Piramidales/patología , Pirimidinas , Tetrazoles
19.
Neurochem Int ; 118: 292-303, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29777731

RESUMEN

Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine implicated in neuronal damage in response to cerebral ischemia. Ischemic preconditioning (IPC) provides neuroprotection against a subsequent severer or longer transient ischemia by ischemic tolerance. Here, we focused on the role of TNF-α in IPC-mediated neuroprotection against neuronal death following a subsequent longer transient cerebral ischemia (TCI). Gerbils used in this study were randomly assigned to eight groups; sham group, TCI operated group, IPC plus (+) sham group, IPC + TCI operated group, sham + etanercept (an inhibitor of TNF-a) group, TCI + etanercept group, IPC + sham + etanercept group, and IPC + TCI + etanercept group. IPC was induced by a 2-min sublethal transient ischemia, which was operated 1 day prior to a longer (5-min) TCI. A significant death of neurons was found in the stratum pyramidale (SP) in the CA1 area (CA1) of the hippocampus 5 days after TCI; however, IPC protected SP neurons from TCI. We found that TNF-α immunoreactivity was significantly increased in CA1 pyramidal neurons in the TCI and IPC + TCI groups compared to the sham group. TNF-R1 expression in CA1 pyramidal neurons of the TCI group was also increased 1 and 2 days after TCI; however, in the IPC + TCI group, TNF-R1 expression was significantly lower than that in the TCI group. On the other hand, we did not detect TNF-R2 immunoreactivity in CA1 pyramidal neurons 1 and 2 days after TCI; meanwhile, in the IPC + TCI group, TNF-R2 expression was significantly increased compared to TNF-R2 expression at 1 and 2 days after TCI. In addition, in this group, TNF-R2 was newly expressed in pericytes, which are important cells in the blood brain barrier, from 1 day after TCI. When we treated etanercept to the IPC + TCI group, IPC-induced neuroprotection was significantly weakened. In brief, this study indicates that IPC confers neuroprotection against TCI by TNF-α signaling through TNF-R2 and suggests that the enhancement of TNF-R2 expression by IPC may be a legitimate strategy for a therapeutic intervention of TCI.


Asunto(s)
Hipocampo/metabolismo , Ataque Isquémico Transitorio/metabolismo , Precondicionamiento Isquémico/métodos , Neuroprotección/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/biosíntesis , Animales , Gerbillinae , Hipocampo/patología , Ataque Isquémico Transitorio/patología , Masculino , Factores de Tiempo
20.
Metab Brain Dis ; 33(4): 1193-1201, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29644488

RESUMEN

Ischemic preconditioning (IPC) in the brain increases ischemic tolerance to subsequent ischemic insults. In this study, we examined whether IPC protects neurons and attenuates microgliosis or not in the hippocampus following severe transient global cerebral ischemia (TCI) in gerbils. Gerbils were assigned to 8 groups; 5- and 15-min sham operated groups, 5-min and 15-min TCI operated groups, IPC plus 5- and 15-min sham operated groups, and IPC plus 5- and 15-min TCI operated groups. IPC was induced by subjecting animals to 2-min transient ischemia 1 day before 5-min TCI for a typical transient ischemia and 15-min TCI for severe transient ischemia. Neuronal damage was examined by cresyl violet staining and Fluoro-Jade B histofluorescence staining. In addition, microglial activation was examined using immunohistochemistry for Iba-1 (a marker for microglia). Delayed neuronal death and microgliosis was found in the CA1 alone in the 5-min TCI operated group at 5 days post-ischemia, and, in the 15-min TCI operated group, neuronal death and microgliosis was shown in all CA areas (CA1-3) and the dentate gyrus. IPC displayed neuroprotection and attenuated microglial activation in the 5-min TCI operated group. However, in the 15-min TCI operated group, IPC did not show neuroprotection and not attenuate microglial activation. Our present findings indicate that IPC hardly protect against severe transient cerebral ischemic injury.


Asunto(s)
Muerte Celular/fisiología , Gliosis/prevención & control , Hipocampo/patología , Ataque Isquémico Transitorio/patología , Precondicionamiento Isquémico/métodos , Neuronas/patología , Animales , Gerbillinae , Gliosis/patología , Microglía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...